ﻻ يوجد ملخص باللغة العربية
Using micro- and nano-scale resonantly excited PL and PLE, we study the excitonic structure of CdSe/ZnSe and CdTe/ZnTe self assembled quantum dots (SAQD). Strong resonantly enhanced PL is seen at one to four optic phonon energies below the laser excitation energy. The maximum enhancement is not just one phonon energy above the peak energy distribution of QDs, but rather is 50 meV (for CdSe dots) or 100 meV (for CdTe) above the peak distribution. We interpret this unusual result as from double resonances associated with excited state to ground state energies being commensurate with LO phonons. Such a situation appears to occur only for the high-energy quantum dots.
We show that two major carrier excitation mechanisms are present in II-VI self-assembled quantum dots. The first one is related to direct excited state - ground state transition. It manifests itself by the presence of sharp and intense lines in the e
We study the exciton spin relaxation in CdTe self-assembled quantum dots by using polarized photoluminescence spectroscopy in magnetic field. The experiments on single CdTe quantum dots and on large quantum dot ensembles show that by combining phonon
The role of the sublimation of the compound and of the evaporation of the constituents from the gold nanoparticle during the growth of semiconductor nanowires is exemplified with CdTe-ZnTe heterostructures. Operating close to the upper temperature li
We study spin dynamics of excitons confined in self-assembled CdSe quantum dots by means of optical orientation in magnetic field. At zero field the exciton emission from QDs populated via LO phonon-assisted absorption shows a circular polarization o
We present a comparative study of two self-assembled quantum dot (QD) systems based on II-VI compounds: CdTe/ZnTe and CdSe/ZnSe. Using magneto-optical techniques we investigated a large population of individual QDs. The systematic photoluminescence s