ﻻ يوجد ملخص باللغة العربية
We show that two major carrier excitation mechanisms are present in II-VI self-assembled quantum dots. The first one is related to direct excited state - ground state transition. It manifests itself by the presence of sharp and intense lines in the excitation spectrum measured from single quantum dots. Apart from these lines, we also observe up to four much broader excitation lines. The energy spacing between these lines indicates that they are associated with absorption related to longitudinal optical phonons. By analyzing resonantly excited photoluminescence spectra, we are able to separate the contributions from these two mechanisms. In the case of CdTe dots, the excited state - ground state relaxation is important for all dots in ensemble, while phonon - assisted processes are dominant for the dots with smaller lateral size.
Using micro- and nano-scale resonantly excited PL and PLE, we study the excitonic structure of CdSe/ZnSe and CdTe/ZnTe self assembled quantum dots (SAQD). Strong resonantly enhanced PL is seen at one to four optic phonon energies below the laser exci
We study the exciton spin relaxation in CdTe self-assembled quantum dots by using polarized photoluminescence spectroscopy in magnetic field. The experiments on single CdTe quantum dots and on large quantum dot ensembles show that by combining phonon
We study spin dynamics of excitons confined in self-assembled CdSe quantum dots by means of optical orientation in magnetic field. At zero field the exciton emission from QDs populated via LO phonon-assisted absorption shows a circular polarization o
The role of the sublimation of the compound and of the evaporation of the constituents from the gold nanoparticle during the growth of semiconductor nanowires is exemplified with CdTe-ZnTe heterostructures. Operating close to the upper temperature li
We present a comparative study of two self-assembled quantum dot (QD) systems based on II-VI compounds: CdTe/ZnTe and CdSe/ZnSe. Using magneto-optical techniques we investigated a large population of individual QDs. The systematic photoluminescence s