ﻻ يوجد ملخص باللغة العربية
In this paper, we construct the first families of distinct Lagrangian ribbon disks in the standard symplectic 4-ball which have the same boundary Legendrian knots, and are not smoothly isotopic or have non-homeomorphic exteriors.
In this note, we classify Stein fillings of an infinite family of contact 3-manifolds up to diffeomorphism. Some contact 3-manifolds in this family can be obtained by Legendrian surgeries on $(S^3,xi_{std})$ along certain Legendrian 2-bridge knots. W
We classify the Legendrian torus knots in S^1times S^2 with its standard tight contact structure up to Legendrian isotopy.
We prove that the LOSS and GRID invariants of Legendrian links in knot Floer homology behave in certain functorial ways with respect to decomposable Lagrangian cobordisms in the symplectization of the standard contact structure on $mathbb{R}^3$. Our
An exact Lagrangian submanifold $L$ in the symplectization of standard contact $(2n-1)$-space with Legendrian boundary $Sigma$ can be glued to itself along $Sigma$. This gives a Legendrian embedding $Lambda(L,L)$ of the double of $L$ into contact $(2
The paper deals with topologically trivial Legendrian knots in tight and overtwisted contact 3-manifolds. The first part contains a thorough exposition of the proof of the classification of topologically trivial Legendrian knots (i.e. Legendrian knot