ﻻ يوجد ملخص باللغة العربية
The paper deals with topologically trivial Legendrian knots in tight and overtwisted contact 3-manifolds. The first part contains a thorough exposition of the proof of the classification of topologically trivial Legendrian knots (i.e. Legendrian knots bounding embedded 2-disks) in tight contact 3-manifolds. This part was essentially written more than 10 years ago, but only a short version, without the detailed proofs, was published (in CRM Proc. Lecture Notes, Vol. 15, 1998). That paper also briefly discussed the overtwisted case. The final part of the present paper contains a more systematic discussion of Legendrian knots in overtwisted contact manifolds, and in particular, gives the coarse classification (i.e. classification up to a global contactomorphism) of topologically trivial Legendrian knots in overtwisted contact S^3.
We prove the equivalence of the invariants EH(L) and LOSS-(L) for oriented Legendrian knots L in the 3-sphere equipped with the standard contact structure, partially extending a previous result by Stipsicz and Vertesi. In the course of the proof we r
In this article, we introduce rack invariants of oriented Legendrian knots in the 3-dimensional Euclidean space endowed with the standard contact structure, which we call Legendrian racks. These invariants form a generalization of the quandle invaria
In this paper, the support genus of all Legendrian right handed trefoil knots and some other Legendrian knots is computed. We give examples of Legendrian knots in the three-sphere with the standard contact structure which have positive support genus
We classify the Legendrian torus knots in S^1times S^2 with its standard tight contact structure up to Legendrian isotopy.
In this paper, we construct the first families of distinct Lagrangian ribbon disks in the standard symplectic 4-ball which have the same boundary Legendrian knots, and are not smoothly isotopic or have non-homeomorphic exteriors.