ﻻ يوجد ملخص باللغة العربية
The phase transitions of random-field q-state Potts models in d=3 dimensions are studied by renormalization-group theory by exact solution of a hierarchical lattice and, equivalently, approximate Migdal-Kadanoff solutions of a cubic lattice. The recursion, under rescaling, of coupled random-field and random-bond (induced under rescaling by random fields) coupled probability distributions is followed to obtain phase diagrams. Unlike the Ising model (q=2), several types of random fields can be defined for q >= 3 Potts models, including random-axis favored, random-axis disfavored, random-axis randomly favored or disfavored cases, all of which are studied. Quantitatively very similar phase diagrams are obtained, for a given q for the three types of field randomness, with the low-temperature ordered phase persisting, increasingly as temperature is lowered, up to random-field threshold in d=3, which is calculated for all temperatures below the zero-field critical temperature. Phase diagrams thus obtained are compared as a function of $q$. The ordered phase in the low-q models reaches higher temperatures, while in the high-q models it reaches higher random fields. This renormalization-group calculation result is physically explained.
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the top
We construct the exact partition function of the Potts model on a complete graph subject to external fields with linear and nematic type couplings. The partition function is obtained as a solution to a linear diffusion equation and the free energy, i
We consider the problem of inferring a graphical Potts model on a population of variables, with a non-uniform number of Potts colors (symbols) across variables. This inverse Potts problem generally involves the inference of a large number of paramete
The surface and bulk properties of the two-dimensional Q > 4 state Potts model in the vicinity of the first order bulk transition point have been studied by exact calculations and by density matrix renormalization group techniques. For the surface tr
A study is made of an anisotropic Potts model in three dimensions where the coupling depends on both the Potts state on each site but also the direction of the bond between them using both analytical and numerical methods. The phase diagram is mapped