ﻻ يوجد ملخص باللغة العربية
We study the regularity and large-time behavior of a crowd of species driven by chemo-tactic interactions. What distinguishes the different species is the way they interact with the rest of the crowd: the collective motion is driven by different chemical reactions which end up in a coupled system of parabolic Patlak-Keller-Segel equations. We show that the densities of the different species diffuse to zero provided the chemical interactions between the different species satisfy certain sub-critical condition; the latter is intimately related to a log-Hardy-Littlewood-Sobolev inequality for systems due to Shafrir & Wolansky. Thus for example, when two species interact, one of which has mass less than $4pi$, then the 2-system stays smooth for all time independent of the total mass of the system, in sharp contrast with the well-known breakdown of one specie with initial mass$> 8pi$.
Perhaps the most classical diffusion model for chemotaxis is the Patlak-Keller-Segel system begin{equation} label{ks0} left{ begin{aligned} u_t =& Delta u - abla cdot(u abla v) quad inn R^2times(0,infty), v =& (-Delta_{R^2})^{-1} u := frac 1{2pi}
In this paper, we proposed a coupled Patlak-Keller-Segel-Navier-Stokes system, which has dissipative free energy. On the plane $rr^2$, if the total mass of the cells is strictly less than $8pi$, classical solutions exist for any finite time, and thei
Based on some elementary estimates for the space-time derivatives of the heat kernel, we use a bootstrapping approach to establish the optimal decay rates for the $L^q(mathbb{R}^d)$ ($1leq qleqinfty$, $dinmathbb{N}$) norm of the space-time derivative
The flux limited Keller-Segel (FLKS) system is a macroscopic model describing bacteria motion by chemotaxis which takes into account saturation of the velocity. The hyper-bolic form and some special parabolic forms have been derived from kinetic equa
We exploit the existence and nonlinear stability of boundary spike/layer solutions of the Keller-Segel system with logarithmic singular sensitivity in the half space, where the physical zero-flux and Dirichlet boundary conditions are prescribed. We f