ﻻ يوجد ملخص باللغة العربية
Perhaps the most classical diffusion model for chemotaxis is the Patlak-Keller-Segel system begin{equation} label{ks0} left{ begin{aligned} u_t =& Delta u - abla cdot(u abla v) quad inn R^2times(0,infty), v =& (-Delta_{R^2})^{-1} u := frac 1{2pi} int_{R^2} , log frac 1{|x-z|} u(z,t), dz, & qquad u(cdot ,0) = u_0 ge 0quadhbox{in } R^2. end{aligned} right. end{equation} We consider the {em critical mass case} $int_{R^2} u_0(x), dx = 8pi$ which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. We find a radial function $u_0^*$ with mass $8pi$ such that for any initial condition $u_0$ sufficiently close to $u_0^*$ the solution $u(x,t)$ of equ{ks0} is globally defined and blows-up in infinite time. As $tto+infty $ it has the approximate profile $$ u(x,t) approx frac 1{la^2} U_0left (frac {x-xi(t)}{la(t)} right ), quad U_0(y)= frac{8}{(1+|y|^2)^2}, $$ where $la(t) approx frac c{sqrt{log t}}, xi(t)to q $ for some $c>0$ and $qin R^2$
We study the regularity and large-time behavior of a crowd of species driven by chemo-tactic interactions. What distinguishes the different species is the way they interact with the rest of the crowd: the collective motion is driven by different chem
We exploit the existence and nonlinear stability of boundary spike/layer solutions of the Keller-Segel system with logarithmic singular sensitivity in the half space, where the physical zero-flux and Dirichlet boundary conditions are prescribed. We f
In this paper, we proposed a coupled Patlak-Keller-Segel-Navier-Stokes system, which has dissipative free energy. On the plane $rr^2$, if the total mass of the cells is strictly less than $8pi$, classical solutions exist for any finite time, and thei
Based on some elementary estimates for the space-time derivatives of the heat kernel, we use a bootstrapping approach to establish the optimal decay rates for the $L^q(mathbb{R}^d)$ ($1leq qleqinfty$, $dinmathbb{N}$) norm of the space-time derivative
In this paper we consider a stochastic Keller-Segel type equation, perturbed with random noise. We establish that for special types of random pertubations (i.e. in a divergence form), the equation has a global weak solution for small initial data. Fu