ﻻ يوجد ملخص باللغة العربية
The flux limited Keller-Segel (FLKS) system is a macroscopic model describing bacteria motion by chemotaxis which takes into account saturation of the velocity. The hyper-bolic form and some special parabolic forms have been derived from kinetic equations describing the run and tumble process for bacterial motion. The FLKS model also has the advantage that traveling pulse solutions exist as observed experimentally. It has attracted the attention of many authors recently. We design and prove a general derivation of the FLKS departing from a kinetic model under stiffness assumption of the chemotactic response and rescaling the kinetic equation according to this stiffness parameter. Unlike the classical Keller-Segel system, solutions of the FLKS system do not blow-up in finite or infinite time. Then we investigate the existence of radially symmetric steady state and long time behaviour of this flux limited Keller-Segel system.
We study the regularity and large-time behavior of a crowd of species driven by chemo-tactic interactions. What distinguishes the different species is the way they interact with the rest of the crowd: the collective motion is driven by different chem
Perhaps the most classical diffusion model for chemotaxis is the Patlak-Keller-Segel system begin{equation} label{ks0} left{ begin{aligned} u_t =& Delta u - abla cdot(u abla v) quad inn R^2times(0,infty), v =& (-Delta_{R^2})^{-1} u := frac 1{2pi}
We exploit the existence and nonlinear stability of boundary spike/layer solutions of the Keller-Segel system with logarithmic singular sensitivity in the half space, where the physical zero-flux and Dirichlet boundary conditions are prescribed. We f
Based on some elementary estimates for the space-time derivatives of the heat kernel, we use a bootstrapping approach to establish the optimal decay rates for the $L^q(mathbb{R}^d)$ ($1leq qleqinfty$, $dinmathbb{N}$) norm of the space-time derivative
In this paper, we proposed a coupled Patlak-Keller-Segel-Navier-Stokes system, which has dissipative free energy. On the plane $rr^2$, if the total mass of the cells is strictly less than $8pi$, classical solutions exist for any finite time, and thei