ﻻ يوجد ملخص باللغة العربية
We discuss the design of interlayer edges in a multiplex network, under a limited budget, with the goal of improving its overall performance. We analyze the following three problems separately; first, we maximize the smallest nonzero eigenvalue, also known as the algebraic connectivity; secondly, we minimize the largest eigenvalue, also known as the spectral radius; and finally, we minimize the spectral width. Maximizing the algebraic connectivity requires identical weights on the interlayer edges for budgets less than a threshold value. However, for larger budgets, the optimal weights are generally non-uniform. The dual formulation transforms the problem into a graph realization (embedding) problem that allows us to give a fuller picture. Namely, before the threshold budget, the optimal realization is one-dimensional with nodes in the same layer embedded to a single point; while, beyond the threshold, the optimal embeddings generally unfold into spaces with dimension bounded by the multiplicity of the algebraic connectivity. Finally, for extremely large budgets the embeddings revert again to lower dimensions. Minimizing the largest eigenvalue is driven by the spectral radius of the individual networks and its corresponding eigenvector. Before a threshold, the total budget is distributed among interlayer edges corresponding to the nodal lines of this eigenvector, and the optimal largest eigenvalue of the Laplacian remains constant. For larger budgets, the weight distribution tends to be almost uniform. In the dual picture, the optimal graph embedding is one-dimensional and non-homogeneous at first and beyond this threshold, the optimal embedding expands to be multi-dimensional, and for larger values of the budget, the two layers fill the embedding space. Finally, we show how these two problems are connected to minimizing the spectral width.
Designing and optimizing different flows in networks is a relevant problem in many contexts. While a number of methods have been proposed in the physics and optimal transport literature for the one-commodity case, we lack similar results for the mult
How can we find the right graph for semi-supervised learning? In real world applications, the choice of which edges to use for computation is the first step in any graph learning process. Interestingly, there are often many types of similarity availa
Many natural, engineered, and social systems can be represented using the framework of a layered network, where each layer captures a different type of interaction between the same set of nodes. The study of such multiplex networks is a vibrant area
Multiplex networks are convenient mathematical representations for many real-world -- biological, social, and technological -- systems of interacting elements, where pairwise interactions among elements have different flavors. Previous studies pointe
Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not rando