ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Supervised Learning of Face Representations for Video Face Clustering

308   0   0.0 ( 0 )
 نشر من قبل Vivek Sharma
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Analyzing the story behind TV series and movies often requires understanding who the characters are and what they are doing. With improving deep face models, this may seem like a solved problem. However, as face detectors get better, clustering/identification needs to be revisited to address increasing diversity in facial appearance. In this paper, we address video face clustering using unsupervised methods. Our emphasis is on distilling the essential information, identity, from the representations obtained using deep pre-trained face networks. We propose a self-supervised Siamese network that can be trained without the need for video/track based supervision, and thus can also be applied to image collections. We evaluate our proposed method on three video face clustering datasets. The experiments show that our methods outperform current state-of-the-art methods on all datasets. Video face clustering is lacking a common benchmark as current works are often evaluated with different metrics and/or different sets of face tracks.



قيم البحث

اقرأ أيضاً

A good clustering algorithm can discover natural groupings in data. These groupings, if used wisely, provide a form of weak supervision for learning representations. In this work, we present Clustering-based Contrastive Learning (CCL), a new clusteri ng-based representation learning approach that uses labels obtained from clustering along with video constraints to learn discriminative face features. We demonstrate our method on the challenging task of learning representations for video face clustering. Through several ablation studies, we analyze the impact of creating pair-wise positive and negative labels from different sources. Experiments on three challenging video face clustering datasets: BBT-0101, BF-0502, and ACCIO show that CCL achieves a new state-of-the-art on all datasets.
We propose two face representations that are blind to facial expressions associated to emotional responses. This work is in part motivated by new international regulations for personal data protection, which enforce data controllers to protect any ki nd of sensitive information involved in automatic processes. The advances in Affective Computing have contributed to improve human-machine interfaces but, at the same time, the capacity to monitorize emotional responses triggers potential risks for humans, both in terms of fairness and privacy. We propose two different methods to learn these expression-blinded facial features. We show that it is possible to eliminate information related to emotion recognition tasks, while the performance of subject verification, gender recognition, and ethnicity classification are just slightly affected. We also present an application to train fairer classifiers in a case study of attractiveness classification with respect to a protected facial expression attribute. The results demonstrate that it is possible to reduce emotional information in the face representation while retaining competitive performance in other face-based artificial intelligence tasks.
Understanding videos such as TV series and movies requires analyzing who the characters are and what they are doing. We address the challenging problem of clustering face tracks based on their identity. Different from previous work in this area, we c hoose to operate in a realistic and difficult setting where: (i) the number of characters is not known a priori; and (ii) face tracks belonging to minor or background characters are not discarded. To this end, we propose Ball Cluster Learning (BCL), a supervised approach to carve the embedding space into balls of equal size, one for each cluster. The learned ball radius is easily translated to a stopping criterion for iterative merging algorithms. This gives BCL the ability to estimate the number of clusters as well as their assignment, achieving promising results on commonly used datasets. We also present a thorough discussion of how existing metric learning literature can be adapted for this task.
Researches using margin based comparison loss demonstrate the effectiveness of penalizing the distance between face feature and their corresponding class centers. Despite their popularity and excellent performance, they do not explicitly encourage th e generic embedding learning for an open set recognition problem. In this paper, we analyse margin based softmax loss in probability view. With this perspective, we propose two general principles: 1) monotonic decreasing and 2) margin probability penalty, for designing new margin loss functions. Unlike methods optimized with single comparison metric, we provide a new perspective to treat open set face recognition as a problem of information transmission. And the generalization capability for face embedding is gained with more clean information. An auto-encoder architecture called Linear-Auto-TS-Encoder(LATSE) is proposed to corroborate this finding. Extensive experiments on several benchmarks demonstrate that LATSE help face embedding to gain more generalization capability and it boosted the single model performance with open training dataset to more than $99%$ on MegaFace test.
Recent advances in deep learning have achieved promising performance for medical image analysis, while in most cases ground-truth annotations from human experts are necessary to train the deep model. In practice, such annotations are expensive to col lect and can be scarce for medical imaging applications. Therefore, there is significant interest in learning representations from unlabelled raw data. In this paper, we propose a self-supervised learning approach to learn meaningful and transferable representations from medical imaging video without any type of human annotation. We assume that in order to learn such a representation, the model should identify anatomical structures from the unlabelled data. Therefore we force the model to address anatomy-aware tasks with free supervision from the data itself. Specifically, the model is designed to correct the order of a reshuffled video clip and at the same time predict the geometric transformation applied to the video clip. Experiments on fetal ultrasound video show that the proposed approach can effectively learn meaningful and strong representations, which transfer well to downstream tasks like standard plane detection and saliency prediction.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا