ﻻ يوجد ملخص باللغة العربية
We propose two face representations that are blind to facial expressions associated to emotional responses. This work is in part motivated by new international regulations for personal data protection, which enforce data controllers to protect any kind of sensitive information involved in automatic processes. The advances in Affective Computing have contributed to improve human-machine interfaces but, at the same time, the capacity to monitorize emotional responses triggers potential risks for humans, both in terms of fairness and privacy. We propose two different methods to learn these expression-blinded facial features. We show that it is possible to eliminate information related to emotion recognition tasks, while the performance of subject verification, gender recognition, and ethnicity classification are just slightly affected. We also present an application to train fairer classifiers in a case study of attractiveness classification with respect to a protected facial expression attribute. The results demonstrate that it is possible to reduce emotional information in the face representation while retaining competitive performance in other face-based artificial intelligence tasks.
Analyzing the story behind TV series and movies often requires understanding who the characters are and what they are doing. With improving deep face models, this may seem like a solved problem. However, as face detectors get better, clustering/ident
A good clustering algorithm can discover natural groupings in data. These groupings, if used wisely, provide a form of weak supervision for learning representations. In this work, we present Clustering-based Contrastive Learning (CCL), a new clusteri
Face anti-spoofing (a.k.a presentation attack detection) has drawn growing attention due to the high-security demand in face authentication systems. Existing CNN-based approaches usually well recognize the spoofing faces when training and testing spo
We propose a discrimination-aware learning method to improve both accuracy and fairness of biased face recognition algorithms. The most popular face recognition benchmarks assume a distribution of subjects without paying much attention to their demog
This paper addresses the problem of 3D face recognition using simultaneous sparse approximations on the sphere. The 3D face point clouds are first aligned with a novel and fully automated registration process. They are then represented as signals on