ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Emotional-Blinded Face Representations

67   0   0.0 ( 0 )
 نشر من قبل Aythami Morales
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose two face representations that are blind to facial expressions associated to emotional responses. This work is in part motivated by new international regulations for personal data protection, which enforce data controllers to protect any kind of sensitive information involved in automatic processes. The advances in Affective Computing have contributed to improve human-machine interfaces but, at the same time, the capacity to monitorize emotional responses triggers potential risks for humans, both in terms of fairness and privacy. We propose two different methods to learn these expression-blinded facial features. We show that it is possible to eliminate information related to emotion recognition tasks, while the performance of subject verification, gender recognition, and ethnicity classification are just slightly affected. We also present an application to train fairer classifiers in a case study of attractiveness classification with respect to a protected facial expression attribute. The results demonstrate that it is possible to reduce emotional information in the face representation while retaining competitive performance in other face-based artificial intelligence tasks.



قيم البحث

اقرأ أيضاً

Analyzing the story behind TV series and movies often requires understanding who the characters are and what they are doing. With improving deep face models, this may seem like a solved problem. However, as face detectors get better, clustering/ident ification needs to be revisited to address increasing diversity in facial appearance. In this paper, we address video face clustering using unsupervised methods. Our emphasis is on distilling the essential information, identity, from the representations obtained using deep pre-trained face networks. We propose a self-supervised Siamese network that can be trained without the need for video/track based supervision, and thus can also be applied to image collections. We evaluate our proposed method on three video face clustering datasets. The experiments show that our methods outperform current state-of-the-art methods on all datasets. Video face clustering is lacking a common benchmark as current works are often evaluated with different metrics and/or different sets of face tracks.
A good clustering algorithm can discover natural groupings in data. These groupings, if used wisely, provide a form of weak supervision for learning representations. In this work, we present Clustering-based Contrastive Learning (CCL), a new clusteri ng-based representation learning approach that uses labels obtained from clustering along with video constraints to learn discriminative face features. We demonstrate our method on the challenging task of learning representations for video face clustering. Through several ablation studies, we analyze the impact of creating pair-wise positive and negative labels from different sources. Experiments on three challenging video face clustering datasets: BBT-0101, BF-0502, and ACCIO show that CCL achieves a new state-of-the-art on all datasets.
122 - Xiaoguang Tu , Jian Zhao , Mei Xie 2019
Face anti-spoofing (a.k.a presentation attack detection) has drawn growing attention due to the high-security demand in face authentication systems. Existing CNN-based approaches usually well recognize the spoofing faces when training and testing spo ofing samples display similar patterns, but their performance would drop drastically on testing spoofing faces of unseen scenes. In this paper, we try to boost the generalizability and applicability of these methods by designing a CNN model with two major novelties. First, we propose a simple yet effective Total Pairwise Confusion (TPC) loss for CNN training, which enhances the generalizability of the learned Presentation Attack (PA) representations. Secondly, we incorporate a Fast Domain Adaptation (FDA) component into the CNN model to alleviate negative effects brought by domain changes. Besides, our proposed model, which is named Generalizable Face Authentication CNN (GFA-CNN), works in a multi-task manner, performing face anti-spoofing and face recognition simultaneously. Experimental results show that GFA-CNN outperforms previous face anti-spoofing approaches and also well preserves the identity information of input face images.
We propose a discrimination-aware learning method to improve both accuracy and fairness of biased face recognition algorithms. The most popular face recognition benchmarks assume a distribution of subjects without paying much attention to their demog raphic attributes. In this work, we perform a comprehensive discrimination-aware experimentation of deep learning-based face recognition. We also propose a general formulation of algorithmic discrimination with application to face biometrics. The experiments include tree popular face recognition models and three public databases composed of 64,000 identities from different demographic groups characterized by gender and ethnicity. We experimentally show that learning processes based on the most used face databases have led to popular pre-trained deep face models that present a strong algorithmic discrimination. We finally propose a discrimination-aware learning method, Sensitive Loss, based on the popular triplet loss function and a sensitive triplet generator. Our approach works as an add-on to pre-trained networks and is used to improve their performance in terms of average accuracy and fairness. The method shows results comparable to state-of-the-art de-biasing networks and represents a step forward to prevent discriminatory effects by automatic systems.
This paper addresses the problem of 3D face recognition using simultaneous sparse approximations on the sphere. The 3D face point clouds are first aligned with a novel and fully automated registration process. They are then represented as signals on the 2D sphere in order to preserve depth and geometry information. Next, we implement a dimensionality reduction process with simultaneous sparse approximations and subspace projection. It permits to represent each 3D face by only a few spherical functions that are able to capture the salient facial characteristics, and hence to preserve the discriminant facial information. We eventually perform recognition by effective matching in the reduced space, where Linear Discriminant Analysis can be further activated for improved recognition performance. The 3D face recognition algorithm is evaluated on the FRGC v.1.0 data set, where it is shown to outperform classical state-of-the-art solutions that work with depth images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا