ﻻ يوجد ملخص باللغة العربية
Two-dimensional electron gases (2DEGs) coupled to superconductors offer the opportunity to explore a variety of quantum phenomena. These include the study of novel Josephson effects, superconducting correlations in quantum (spin) Hall systems, hybrid superconducting qubits and emergent topological states in semiconductors with spin-orbit interaction (SOI). InSb is a well-known example of such a strong SOI semiconductor, however hybrid superconducting devices in InSb quantum wells remain unexplored. Here, we interface InSb 2DEGs with a superconductor (NbTiN) to create Josephson junctions (JJs), thus providing the first evidence of induced superconductivity in high quality InSb quantum wells. The JJs support supercurrent transport over several microns and display clear signatures of ballistic superconductivity. Furthermore, we exploit the large Land{e} g-factor and gate tunability of the junctions to control the current-phase relation, and drive transitions between the $0$ and $pi$-states. This control over the free energy landscape allows us to construct a phase diagram identifying these $0$ and $pi$-regions, in agreement with theory. Our results establish InSb quantum wells as a promising new material platform to study the interplay between superconductivity, SOI and magnetism.
Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is
We report the room temperature observation of significant ballistic electron transport in shallow etched four-terminal mesoscopic devices fabricated on an InSb/AlInSb quantum well (QW) heterostructure with a crucial partitioned growth-buffer scheme.
One of the consequences of Cooper pairs having a finite momentum in the interlayer of a Josephson junction, is $pi$-junction behavior. The finite momentum can either be due to an exchange field in ferromagnetic Josephson junctions, or due to the Zeem
We report an experimental study of one-dimensional (1D) electronic transport in an InSb semiconducting nanowire. Three bottom gates are used to locally deplete the nanowire creating a ballistic quantum point contact with only a few conducting channel
We report magnetotransport measurements of a gated InSb quantum well (QW) with high quality Al2O3 dielectrics (40 nm thick) grown by atomic layer deposition. The magnetoresistance data demonstrate a parallel conduction channel in the sample at zero g