ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions

63   0   0.0 ( 0 )
 نشر من قبل Hongqi Xu Professor
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is a necessary step towards engineering topological superconducting electronics. Here, we report on a low-temperature transport study of Josephson junction devices fabricated from InSb nanowires grown by molecular-beam epitaxy and provide a clear evidence for phase-coherent, ballistic charge transport through the nanowires in the junctions. We demonstrate that our devices show gate-tunable proximity-induced supercurrent and clear signatures of multiple Andreev reflections in the differential conductance, indicating phase-coherent transport within the junctions. We also observe periodic modulations of the critical current that can be associated with the Fabry-P{e}rot interference in the nanowires in the ballistic transport regime. Our work shows that the InSb nanowires grown by molecular-beam epitaxy are of excellent material quality and hybrid superconducting devices made from these nanowires are highly desirable for investigation of the novel physics in topological states of matter and for applications in topological quantum electronics.



قيم البحث

اقرأ أيضاً

We report an experimental study of one-dimensional (1D) electronic transport in an InSb semiconducting nanowire. Three bottom gates are used to locally deplete the nanowire creating a ballistic quantum point contact with only a few conducting channel s. In a magnetic field, the Zeeman splitting of the corresponding 1D subbands is revealed by the emergence of conductance plateaus at multiples of $e^2$/h, yet we find a quantized conductance pattern largely dependent on the configuration of voltages applied to the bottom gates. In particular, we can make the first plateau disappear leaving a first conductance step of 2$e^2/h$, which is indicative of a remarkable two-fold subband degeneracy that can persist up to several Tesla. For certain gate voltage settings, we also observe the presence of discrete resonant states producing conductance features that can resemble those expected from the opening of a helical gap in the subband structure. We explain our experimental findings through the formation of two spatially separated 1D conduction channels.
We study superconducting quantum interference in InSb flake Josephson junctions. An even-odd effect in the amplitude and periodicity of the superconducting quantum interference pattern is found. Interestingly, the occurrence of this pattern coincides with enhanced conduction at both edges of the flake, as is deduced from measuring a SQUID pattern at reduced gate voltages. We identify the specific crystal facet of the edge with enhanced conduction, and confirm this by measuring multiple devices. Furthermore, we argue the even-odd effect is due to crossed Andreev reflection, a process where a Cooper pair splits up over the two edges and recombines at the opposite contact. An entirely $h/e$ periodic SQUID pattern, as well as the observation of both even-odd and odd-even effects, corroborates this conclusion. Crossed Andreev reflection could be harnessed for creating a topological state of matter or performing experiments on the non-local spin-entanglement of spatially separated Cooper pairs.
Hybrid graphene-superconductor devices have attracted much attention since the early days of graphene research. So far, these studies have been limited to the case of diffusive transport through graphene with poorly defined and modest quality graphen e-superconductor interfaces, usually combined with small critical magnetic fields of the superconducting electrodes. Here we report graphene based Josephson junctions with one-dimensional edge contacts of Molybdenum Rhenium. The contacts exhibit a well defined, transparent interface to the graphene, have a critical magnetic field of 8 Tesla at 4 Kelvin and the graphene has a high quality due to its encapsulation in hexagonal boron nitride. This allows us to study and exploit graphene Josephson junctions in a new regime, characterized by ballistic transport. We find that the critical current oscillates with the carrier density due to phase coherent interference of the electrons and holes that carry the supercurrent caused by the formation of a Fabry-P{e}rot cavity. Furthermore, relatively large supercurrents are observed over unprecedented long distances of up to 1.5 $mu$m. Finally, in the quantum Hall regime we observe broken symmetry states while the contacts remain superconducting. These achievements open up new avenues to exploit the Dirac nature of graphene in interaction with the superconducting state.
Two-dimensional electron gases (2DEGs) coupled to superconductors offer the opportunity to explore a variety of quantum phenomena. These include the study of novel Josephson effects, superconducting correlations in quantum (spin) Hall systems, hybrid superconducting qubits and emergent topological states in semiconductors with spin-orbit interaction (SOI). InSb is a well-known example of such a strong SOI semiconductor, however hybrid superconducting devices in InSb quantum wells remain unexplored. Here, we interface InSb 2DEGs with a superconductor (NbTiN) to create Josephson junctions (JJs), thus providing the first evidence of induced superconductivity in high quality InSb quantum wells. The JJs support supercurrent transport over several microns and display clear signatures of ballistic superconductivity. Furthermore, we exploit the large Land{e} g-factor and gate tunability of the junctions to control the current-phase relation, and drive transitions between the $0$ and $pi$-states. This control over the free energy landscape allows us to construct a phase diagram identifying these $0$ and $pi$-regions, in agreement with theory. Our results establish InSb quantum wells as a promising new material platform to study the interplay between superconductivity, SOI and magnetism.
Signatures of Majorana zero modes (MZMs), which are the building blocks for fault-tolerant topological quantum computing, have been observed in semiconductor nanowires (NW) with strong spin-orbital-interaction (SOI), such as InSb and InAs NWs with pr oximity-induced superconductivity. Realizing topological superconductivity and MZMs in this most widely-studied platform also requires eliminating spin degeneracy, which is realized by applying a magnetic field to induce a helical gap. However, the applied field can adversely impact the induced superconducting state in the NWs and also places geometric restrictions on the device, which can affect scaling of future MZM-based quantum registers. These challenges could be circumvented by integrating magnetic elements with the NWs. With this motivation, in this work we report the first experimental investigation of spin transport across InSb NWs, which are enabled by devices with ferromagnetic (FM) contacts. We observe signatures of spin polarization and spin-dependent transport in the quasi-one-dimensional ballistic regime. Moreover, we show that electrostatic gating tunes the observed magnetic signal and also reveals a transport regime where the device acts as a spin filter. These results open an avenue towards developing MZM devices in which spin degeneracy is lifted locally, without the need of an applied magnetic field. They also provide a path for realizing spin-based devices that leverage spin-orbital states in quantum wires.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا