ﻻ يوجد ملخص باللغة العربية
With the rapid development in deep learning, deep neural networks have been widely adopted in many real-life natural language applications. Under deep neural networks, a pre-defined vocabulary is required to vectorize text inputs. The canonical approach to select pre-defined vocabulary is based on the word frequency, where a threshold is selected to cut off the long tail distribution. However, we observed that such simple approach could easily lead to under-sized vocabulary or over-sized vocabulary issues. Therefore, we are interested in understanding how the end-task classification accuracy is related to the vocabulary size and what is the minimum required vocabulary size to achieve a specific performance. In this paper, we provide a more sophisticated variational vocabulary dropout (VVD) based on variational dropout to perform vocabulary selection, which can intelligently select the subset of the vocabulary to achieve the required performance. To evaluate different algorithms on the newly proposed vocabulary selection problem, we propose two new metrics: Area Under Accuracy-Vocab Curve and Vocab Size under X% Accuracy Drop. Through extensive experiments on various NLP classification tasks, our variational framework is shown to significantly outperform the frequency-based and other selection baselines on these metrics.
Many of the current state-of-the-art Large Vocabulary Continuous Speech Recognition Systems (LVCSR) are hybrids of neural networks and Hidden Markov Models (HMMs). Most of these systems contain separate components that deal with the acoustic modellin
In this paper, we present an end-to-end training framework for building state-of-the-art end-to-end speech recognition systems. Our training system utilizes a cluster of Central Processing Units(CPUs) and Graphics Processing Units (GPUs). The entire
The pursuit of high performance on public benchmarks has been the driving force for research in scene text recognition, and notable progress has been achieved. However, a close investigation reveals a startling fact that the state-of-the-art methods
Several approaches have been proposed in recent literature to alleviate the long-tail problem, mainly in object classification tasks. In this paper, we make the first large-scale study concerning the task of Long-Tail Visual Relationship Recognition
Arabic is a semitic language characterized by a complex and rich morphology. The exceptional degree of ambiguity in the writing system, the rich morphology, and the highly complex word formation process of roots and patterns all contribute to making