ﻻ يوجد ملخص باللغة العربية
Arabic is a semitic language characterized by a complex and rich morphology. The exceptional degree of ambiguity in the writing system, the rich morphology, and the highly complex word formation process of roots and patterns all contribute to making computational approaches to Arabic very challenging. As a result, a practical handwriting recognition system should support large vocabulary to provide a high coverage and use the context information for disambiguation. Several research efforts have been devoted for building online Arabic handwriting recognition systems. Most of these methods are either using their small private test data sets or a standard database with limited lexicon and coverage. A large scale handwriting database is an essential resource that can advance the research of online handwriting recognition. Currently, there is no online Arabic handwriting database with large lexicon, high coverage, large number of writers and training/testing data. In this paper, we introduce AltecOnDB, a large scale online Arabic handwriting database. AltecOnDB has 98% coverage of all the possible PAWS of the Arabic language. The collected samples are complete sentences that include digits and punctuation marks. The collected data is available on sentence, word and character levels, hence, high-level linguistic models can be used for performance improvements. Data is collected from more than 1000 writers with different backgrounds, genders and ages. Annotation and verification tools are developed to facilitate the annotation and verification phases. We built an elementary recognition system to test our database and show the existing difficulties when handling a large vocabulary and dealing with large amounts of styles variations in the collected data.
Arabic handwriting is a consonantal and cursive writing. The analysis of Arabic script is further complicated due to obligatory dots/strokes that are placed above or below most letters and usually written delayed in order. Due to ambiguities and dive
In the recent years it turned out that multidimensional recurrent neural networks (MDRNN) perform very well for offline handwriting recognition tasks like the OpenHaRT 2013 evaluation DIR. With suitable writing preprocessing and dictionary lookup, ou
This paper introduces an agent-centric approach to handle novelty in the visual recognition domain of handwriting recognition (HWR). An ideal transcription agent would rival or surpass human perception, being able to recognize known and new character
We attempt to overcome the restriction of requiring a writing surface for handwriting recognition. In this study, we design a prototype of a stylus equipped with motion sensor, and utilizes gyroscopic and acceleration sensor reading to perform writte
Several approaches have been proposed in recent literature to alleviate the long-tail problem, mainly in object classification tasks. In this paper, we make the first large-scale study concerning the task of Long-Tail Visual Relationship Recognition