ﻻ يوجد ملخص باللغة العربية
We present results of a Au-Ge alloy that is useful as a resistance-based thermometer from room temperature down to at least SI{0.2}{kelvin}. Over a wide range, the electrical resistivity of the alloy shows a logarithmic temperature dependence, which simultaneously retains the sensitivity required for practical thermometry while also maintaining a relatively modest and easily-measurable value of resistivity. We characterize the sensitivity of the alloy as a possible thermometer and show that it compares favorably to commercially-available temperature sensors. We experimentally identify that the characteristic logarithmic temperature dependence of the alloy stems from Kondo-like behavior induced by the specific heat treatment it undergoes.
The Coulomb Blockade Thermometer (CBT) is a primary thermometer for cryogenic temperatures, with demonstrated operation from below 1 mK up to 60 K. Its performance as a primary thermometer has been verified at temperatures from 20 mK to 200 mK at unc
We demonstrate experimentally that disorder enhanced Andreev current in a tunnel junction between a normal metal and a superconductor provides a method to measure electronic temperature, specifically at temperatures below 200 mK when aluminium is use
We report here an experimental and theoretical study on the magnetoresistance properties of heavily phosphorous doped germanium on the metallic side of the metal-nonmetal transition. An anomalous regime, formed by negative values of the magnetoresist
We report an investigation on the properties of 0.33 ML of Sn on Ge(111) at temperatures down to 5 K. Low-energy electron diffraction and scanning tunneling microscopy show that the (3x3) phase formed at 200 K, reverts to a new (root-3xroot-3)R30 pha
The electronic properties of thin metallic films deviate from the corresponding bulk ones when the film thickness is comparable with the wavelength of the electrons at the Fermi level due to quantum size effects (QSE). QSE are expected to affect the