ﻻ يوجد ملخص باللغة العربية
We demonstrate experimentally that disorder enhanced Andreev current in a tunnel junction between a normal metal and a superconductor provides a method to measure electronic temperature, specifically at temperatures below 200 mK when aluminium is used. This Andreev thermometer has some advantages over conventional quasiparticle thermometers: for instance, it does not conduct heat and its reading does not saturate until at lower temperatures. Another merit is that the responsivity is constant over a wide temperature range.
We present results of a Au-Ge alloy that is useful as a resistance-based thermometer from room temperature down to at least SI{0.2}{kelvin}. Over a wide range, the electrical resistivity of the alloy shows a logarithmic temperature dependence, which
We investigate thin film resistive thermometry based on metal-to-insulator-transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance have been calibrated versus temperature and magnetic field
We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approxom
The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS$_2$ with
We propose a scheme to detect the Majorana-zero-mode-induced crossed Andreev reflection by measuring tunneling current directly. In this scheme a metallic ring structure is utilized to separate electron and hole signals. Since tunneling electrons and