ترغب بنشر مسار تعليمي؟ اضغط هنا

Driving massive molecular gas flows in central cluster galaxies with AGN feedback

85   0   0.0 ( 0 )
 نشر من قبل Helen Russell
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of new and archival ALMA observations of molecular gas in twelve central cluster galaxies. We examine emerging trends in molecular filament morphology and gas velocities to understand their origins. Molecular gas masses in these systems span $10^9-10^{11}mathrm{M}_{odot}$, far more than most gas-rich galaxies. ALMA images reveal a distribution of morphologies from filamentary to disk-dominated structures. Circumnuclear disks on kiloparsec scales appear rare. In most systems, half to nearly all of the molecular gas lies in filamentary structures with masses of a few $times10^{8-10}mathrm{M}_{odot}$ that extend radially several to several tens of kpc. In nearly all cases the molecular gas velocities lie far below stellar velocity dispersions, indicating youth, transience or both. Filament bulk velocities lie far below the galaxys escape and free-fall speeds indicating they are bound and being decelerated. Most extended molecular filaments surround or lie beneath radio bubbles inflated by the central AGN. Smooth velocity gradients found along the filaments are consistent with gas flowing along streamlines surrounding these bubbles. Evidence suggests most of the molecular clouds formed from low entropy X-ray gas that became thermally unstable and cooled when lifted by the buoyant bubbles. Uplifted gas will stall and fall back to the galaxy in a circulating flow. The distribution in morphologies from filament to disk-dominated sources therefore implies slowly evolving molecular structures driven by the episodic activity of the AGN.

قيم البحث

اقرأ أيضاً

Passive early-type galaxies dominate cluster cores at z $lesssim$1.5. At higher redshift, cluster core galaxies are observed to have still on-going star-formation, fuelled by cold molecular gas. We measure the molecular gas reservoir of the central r egion around the radio-loud AGN in the cluster CARLA J1103+3449 at z=1.44 with NOEMA. The AGN synchrotron emission dominates the continuum emission at 94.48 GHz, and we measure its flux at the AGN position and at the position of two radio jets. Combining our measurements with published results over the range 4.71 GHz-94.5 GHz, we obtain a flat spectral index $alpha = 0.14 pm 0.03$ for the AGN core emission, and a steeper index $alpha = 1.43 pm 0.04$ and $alpha = 1.15 pm 0.04$ at positions close to the western and eastern lobe, respectively. The total spectral index is $alpha = 0.92 pm 0.02$ over the range 73.8 MHz-94.5 GHz. We detect two CO(2-1) emission lines, both blue-shifted with respect to the AGN. Their emission corresponds to two regions, ~17 kpc south-east and ~14 kpc south-west of the AGN, not associated with galaxies. In these two regions, we find a total massive molecular gas reservoir of $M_{gas}$ = 3.9 $pm$ 0.4 $10^{10} M_{odot}$, which dominates (~ 60%) the central total molecular gas reservoir. These results can be explained by massive cool gas flows in the center of the cluster. The AGN early-type host is not yet quenched; its star formation rate is consistent with being on the main sequence of star-forming galaxies in the field (SFR~30-140 $M_{odot}$/yr), and the cluster core molecular gas reservoir is expected to feed the AGN and the host star-formation before quiescence. The other cluster confirmed members show star formation rates at ~2 $sigma$ below the field main sequence at similar redshifts and do not have molecular gas masses larger than galaxies of similar stellar mass in the field.
133 - D. Kakkad , V. Mainieri , M. Brusa 2017
Similarly to the cosmic star formation history, the black hole accretion rate density of the Universe peaked at 1<z<3. This cosmic epoch is hence best suited for investigating the effects of radiative feedback from AGN. Observational efforts are unde rway to quantify the impact of AGN feedback, if any, on their host galaxies. Here we present a study of the molecular gas content of AGN hosts at z~1.5 using CO[2-1] line emission observed with ALMA for a sample of 10 AGNs. We compare this with a sample of galaxies without an AGN matched in redshift, stellar mass, and star formation rate. We detect CO in 3 AGNs with $mathrm{L_{CO} sim 6.3-25.1times 10^{9} L_{odot}}$ which translates to a molecular hydrogen gas mass of $mathrm{2.5-10times 10^{10} M_{odot}}$ assuming conventional conversion factor of $mathrm{alpha_{CO}}sim3.6$. Our results indicate a >99% probability of lower depletion time scales and lower molecular gas fractions in AGN hosts with respect to the non-AGN comparison sample. We discuss the implications of these observations on the impact that AGN feedback may have on star formation efficiency of z>1 galaxies.
560 - B.R. McNamara 2016
Observation shows that nebular emission, molecular gas, and young stars in giant galaxies are associated with rising X-ray bubbles inflated by radio jets launched from nuclear black holes. We propose a model where molecular clouds condense from low e ntropy gas caught in the updraft of rising X-ray bubbles. The low entropy gas becomes thermally unstable when it is lifted to an altitude where its cooling time is shorter than the time required to fall to its equilibrium location in the galaxy i.e., t_c/t_I < 1. The infall speed of a cloud is bounded by the lesser of its free-fall and terminal speeds, so that the infall time here can exceed the the free-fall time by a significant factor. This mechanism is motivated by ALMA observations revealing molecular clouds lying in the wakes of rising X-ray bubbles with velocities well below their free-fall speeds. Our mechanism would provide cold gas needed to fuel a feedback loop while stabilizing the atmosphere on larger scales. The observed cooling time threshold of ~ 5x 10^8 yr --- the clear-cut signature of thermal instability and the onset of nebular emission and star formation--- may result from the limited ability of radio bubbles to lift low entropy gas to altitudes where thermal instabilities can ensue. Outflowing molecular clouds are unlikely to escape, but instead return to the central galaxy in a circulating flow. We contrast our mechanism to precipitation models where the minimum value of t_c/t_ff < 10 triggers thermal instability, which we find to be inconsistent with observation.
We present the host galaxy molecular gas properties of a sample of 213 nearby (0.01<z< 0.05) hard X-ray selected AGN galaxies, drawn from the 70-month catalog of Swift-BAT, with 200 new CO(2-1) line measurements obtained with the JCMT and APEX telesc opes. We find that AGN in massive galaxies tend to have more molecular gas, and higher gas fractions, than inactive galaxies matched in stellar mass. When matched in star formation, we find AGN galaxies show no difference from inactive galaxies with no evidence of AGN feedback affecting the molecular gas. The higher molecular gas content is related to AGN galaxies hosting a population of gas-rich early types with an order of magnitude more molecular gas and a smaller fraction of quenched, passive galaxies (~5% vs. 49%). The likelihood of a given galaxy hosting an AGN (L_bol>10^44 erg/s) increases by ~10-100 between a molecular gas mass of 10^8.7 Msun and 10^10.2 Msun. Higher Eddington ratio AGN galaxies tend to have higher molecular gas masses and gas fractions. Higher column density AGN galaxies (Log NH>23.4) are associated with lower depletion timescales and may prefer hosts with more gas centrally concentrated in the bulge that may be more prone to quenching than galaxy wide molecular gas. The significant average link of host galaxy molecular gas supply to SMBH growth may naturally lead to the general correlations found between SMBHs and their host galaxies, such as the correlations between SMBH mass and bulge properties and the redshift evolution of star formation and SMBH growth.
We present new ALMA observations tracing the morphology and velocity structure of the molecular gas in the central galaxy of the cluster Abell 1795. The molecular gas lies in two filaments that extend 5 - 7 kpc to the N and S from the nucleus and pro ject exclusively around the outer edges of two inner radio bubbles. Radio jets launched by the central AGN have inflated bubbles filled with relativistic plasma into the hot atmosphere surrounding the central galaxy. The N filament has a smoothly increasing velocity gradient along its length from the central galaxys systemic velocity at the nucleus to -370 km/s, the average velocity of the surrounding galaxies, at the furthest extent. The S filament has a similarly smooth but shallower velocity gradient and appears to have partially collapsed in a burst of star formation. The close spatial association with the radio lobes, together with the ordered velocity gradients and narrow velocity dispersions, show that the molecular filaments are gas flows entrained by the expanding radio bubbles. Assuming a Galactic $X_{mathrm{CO}}$ factor, the total molecular gas mass is $3.2pm0.2times10^{9}$M$_{odot}$. More than half lies above the N radio bubble. Lifting the molecular clouds appears to require an infeasibly efficient coupling between the molecular gas and the radio bubble. The energy required also exceeds the mechanical power of the N radio bubble by a factor of two. Stimulated feedback, where the radio bubbles lift low entropy X-ray gas that becomes thermally unstable and rapidly cools in situ, provides a plausible model. Multiple generations of radio bubbles are required to lift this substantial gas mass. The close morphological association then indicates that the cold gas either moulds the newly expanding bubbles or is itself pushed aside and shaped as they inflate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا