ترغب بنشر مسار تعليمي؟ اضغط هنا

Close entrainment of massive molecular gas flows by radio bubbles in the central galaxy of Abell 1795

138   0   0.0 ( 0 )
 نشر من قبل Helen Russell
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new ALMA observations tracing the morphology and velocity structure of the molecular gas in the central galaxy of the cluster Abell 1795. The molecular gas lies in two filaments that extend 5 - 7 kpc to the N and S from the nucleus and project exclusively around the outer edges of two inner radio bubbles. Radio jets launched by the central AGN have inflated bubbles filled with relativistic plasma into the hot atmosphere surrounding the central galaxy. The N filament has a smoothly increasing velocity gradient along its length from the central galaxys systemic velocity at the nucleus to -370 km/s, the average velocity of the surrounding galaxies, at the furthest extent. The S filament has a similarly smooth but shallower velocity gradient and appears to have partially collapsed in a burst of star formation. The close spatial association with the radio lobes, together with the ordered velocity gradients and narrow velocity dispersions, show that the molecular filaments are gas flows entrained by the expanding radio bubbles. Assuming a Galactic $X_{mathrm{CO}}$ factor, the total molecular gas mass is $3.2pm0.2times10^{9}$M$_{odot}$. More than half lies above the N radio bubble. Lifting the molecular clouds appears to require an infeasibly efficient coupling between the molecular gas and the radio bubble. The energy required also exceeds the mechanical power of the N radio bubble by a factor of two. Stimulated feedback, where the radio bubbles lift low entropy X-ray gas that becomes thermally unstable and rapidly cools in situ, provides a plausible model. Multiple generations of radio bubbles are required to lift this substantial gas mass. The close morphological association then indicates that the cold gas either moulds the newly expanding bubbles or is itself pushed aside and shaped as they inflate.



قيم البحث

اقرأ أيضاً

We report ALMA Early Science CO(1-0) and CO(3-2) observations of the brightest cluster galaxy (BCG) in Abell 1664. The BCG contains 1.1x10^{10} solar masses of molecular gas divided roughly equally between two distinct velocity systems: one from -250 to +250 km/s centred on the BCGs systemic velocity and a high velocity system blueshifted by 570 km/s with respect to the systemic velocity. The BCGs systemic component shows a smooth velocity gradient across the BCG center with velocity proportional to radius suggestive of solid body rotation about the nucleus. However, the mass and velocity structure are highly asymmetric and there is little star formation coincident with a putative disk. It may be an inflow of gas that will settle into a disk over several 10^8 yr. The high velocity system consists of two gas clumps, each ~2 kpc across, located to the north and southeast of the nucleus. Each has a line of sight velocity spread of 250-300 km/s. The velocity of the gas in the high velocity system tends to increase towards the BCG center and could signify a massive high velocity flow onto the nucleus. However, the velocity gradient is not smooth and these structures are also coincident with low optical-UV surface brightness regions, which could indicate dust extinction associated with each clump. If so, the high velocity gas would be projected in front of the BCG and moving toward us along the line of sight in a massive outflow most likely driven by the AGN. A merger origin is unlikely but cannot be ruled out.
139 - M. Jamrozy 2014
In this paper we analyze the peculiar radio structure observed across the central region of the galaxy cluster Abell 585 (z=0.12). In the low-resolution radio maps, this structure appears uniform and diffuse on angular scales of ~3 arcmin, and is see mingly related to the distant (z=2.5) radio quasar B3 0727+409 rather than to the cluster itself. However, after a careful investigation of the unpublished archival radio data with better angular resolution, we resolve the structure into two distinct arcmin-scale features, which resemble typical lobes of cluster radio galaxies with no obvious connection to the background quasar. We support this conclusion by examining the spectral and polarization properties of the features, demonstrating in addition that the analyzed structure can hardly be associated with any sort of a radio mini-halo or relics of the cluster. Yet at the same time we are not able to identify host galaxies of the radio lobes in the available optical and infrared surveys. We consider some speculative explanations for our findings, including gravitational wave recoil kicks of SMBHs responsible for the lobes formation in the process of merging massive ellipticals within the central parts of a rich cluster environment, but we do not reach any robust conclusions regarding the origin of the detected radio features.
We present an analysis of new and archival ALMA observations of molecular gas in twelve central cluster galaxies. We examine emerging trends in molecular filament morphology and gas velocities to understand their origins. Molecular gas masses in thes e systems span $10^9-10^{11}mathrm{M}_{odot}$, far more than most gas-rich galaxies. ALMA images reveal a distribution of morphologies from filamentary to disk-dominated structures. Circumnuclear disks on kiloparsec scales appear rare. In most systems, half to nearly all of the molecular gas lies in filamentary structures with masses of a few $times10^{8-10}mathrm{M}_{odot}$ that extend radially several to several tens of kpc. In nearly all cases the molecular gas velocities lie far below stellar velocity dispersions, indicating youth, transience or both. Filament bulk velocities lie far below the galaxys escape and free-fall speeds indicating they are bound and being decelerated. Most extended molecular filaments surround or lie beneath radio bubbles inflated by the central AGN. Smooth velocity gradients found along the filaments are consistent with gas flowing along streamlines surrounding these bubbles. Evidence suggests most of the molecular clouds formed from low entropy X-ray gas that became thermally unstable and cooled when lifted by the buoyant bubbles. Uplifted gas will stall and fall back to the galaxy in a circulating flow. The distribution in morphologies from filament to disk-dominated sources therefore implies slowly evolving molecular structures driven by the episodic activity of the AGN.
We report new ALMA observations of the CO(3-2) line emission from the $2.1pm0.3times10^{10}rmthinspace M_{odot}$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate o f $500-800rmthinspace M_{odot}rm; yr^{-1}$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $10-20rm; kpc$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. The very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.
We report ALMA Early Science observations of the Abell 1835 brightest cluster galaxy (BCG) in the CO (3-2) and CO (1-0) emission lines. We detect 5E10 solar masses of molecular gas within 10 kpc of the BCG. Its velocity width of ~130 km/s FWHM is too narrow to be supported by dynamical pressure. The gas may instead be supported in a rotating, turbulent disk oriented nearly face-on. The disk is forming stars at a rate of 100-180 solar masses per year. Roughly 1E10 solar masses of molecular gas is projected 3-10 kpc to the north-west and to the east of the nucleus with line of sight velocities lying between -250 km/s to +480 km/s with respect to the systemic velocity. Although inflow cannot be ruled out, the rising velocity gradient with radius is consistent with a broad, bipolar outflow driven by radio jets or buoyantly rising X-ray cavities. The molecular outflow may be associated with an outflow of hot gas in Abell 1835 seen on larger scales. Molecular gas is flowing out of the BCG at a rate of approximately 200 solar masses per year, which is comparable to its star formation rate. How radio bubbles lift dense molecular gas in their updrafts, how much gas will be lost to the BCG, and how much will return to fuel future star formation and AGN activity are poorly understood. Our results imply that radio-mechanical (radio mode) feedback not only heats hot atmospheres surrounding elliptical galaxies and BCGs, it is able to sweep higher density molecular gas away from their centers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا