ترغب بنشر مسار تعليمي؟ اضغط هنا

Unconventional superconducting phases in a correlated two-dimensional Fermi gas of nonstandard quasiparticles: a simple model

175   0   0.0 ( 0 )
 نشر من قبل Jozef Spalek
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss a detailed phase diagram and other microscopic characteristics on the applied magnetic field - temperature (H_a-T) plane for a simple model of correlated fluid represented by a two-dimensional (2D) gas of heavy quasiparticles with masses dependent on the spin direction and the effective field generated by the electron correlations. The consecutive transitions between the Bardeen-Cooper-Schrieffer (BCS) and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases are either continuous or discontinuous, depending on the values of H_a and T. In the latter case, weak metamagnetic transitions occur at the BCS-FFLO boundary. We single out two different FFLO phases, as well as a reentrant behaviour of one of them at high fields. The results are compared with those for ordinary Landau quasiparticles in order to demonstrate the robustness of the FFLO states against the BCS state for the case with spin-dependent masses (SDM). We believe that the mechanism of FFLO stabilization by SDM is generic: other high-field low-temperature (HFLT) superconducting phases benefit from SDM as well.



قيم البحث

اقرأ أيضاً

We study the phase diagram of the extended Hubbard model on a two-dimensional square lattice, including on-site (U) and nearest-neighbor (V) interactions, at weak couplings. We show that the charge-density-wave phase that is known to occur at half-fi lling when 4V > U gives way to a d_{xy} -wave superconducting instability away from half-filling, when the Fermi surface is not perfectly nested, and for sufficiently large repulsive and a range of on-site repulsive interaction. In addition, when nesting is further suppressed and in presence of a nearest-neighbor attraction, a triplet time-reversal breaking (p_x + ip_y)-wave pairing instability emerges, competing with the d_{x2+y2} pairing state that is known to dominate at fillings just slightly away from half. At even smaller fillings, where the Fermi surface no longer presents any nesting, the (p_x +ip_y)-wave superconducting phase dominates in the whole regime of on-site repulsions and nearest-neighbor attractions, while d_{xy}-pairing occurs in the presence of on-site attraction. Our results suggest that zero-energy Majorana fermions can be realized on a square lattice in the presence of a magnetic field. For a system of cold fermionic atoms on a two-dimensional square optical lattice, both an on-site repulsion and a nearest-neighbor attraction would be required, in addition to rotation of the system to create vortices. We discuss possible ways of experimentally engineering the required interaction terms in a cold atom system.
Superconductivity induced by a magnetic field near metamagnetism is a striking manifestation of magnetically-mediated superconducting pairing. After being observed in itinerant ferromagnets, this phenomenon was recently reported in the orthorhombic p aramagnet UTe$_2$. Under a magnetic field applied along the hard magnetization axis b, superconductivity is reinforced on approaching metamagnetism at $mu_0H_m$ = 35 T, but it abruptly disappears beyond $H_m$. On the contrary, field-induced superconductivity was reported beyond $mu_0H_m$ = 40-50 T in a magnetic field tilted by $simeq25-30deg$ from b in the (b,c) plane. Here we explore the phase diagram of UTe2 under these two magnetic-field directions. Zero-resistance measurements permit to confirm unambiguously that superconductivity is established beyond Hm in the tilted-field direction. While superconductivity is locked exactly at fields either smaller (for a H || b), or larger (for H tilted by $simeq27deg$ from b to c), than Hm, the variations of the Fermi-liquid coefficient in the electrical resistivity and of the residual resistivity are surprisingly similar for the two field directions. The resemblance of the normal states for the two field directions puts constraints for theoretical models of superconductivity and implies that some subtle ingredients must be in play.
A chiral $p_x+ip_y$ superconductor on a square lattice with nearest and next-nearest hopping and pairing terms is considered. Gap closures, as various parameters of the system are varied, are found analytically and used to identify the topological ph ases. The phases are characterized by Chern numbers (ranging from -3 to 3), and (numerically) by response to introduction of weak disorder, edges, and magnetic fields in an extreme type-II limit, focusing on the low-energy modes (which presumably become zero-energy Majorana modes for large lattices and separations). Several phases are found, including a phase with Chern number 3 that cannot be thought of in terms of a single range of interaction, and phase with Chern number 2 that may host an additional, disorder resistant, Majorana mode. The energies of the vortex quasiparticle modes were found to oscillate as vortex position varied. The spatial length scale of these oscillations was found for various points in the Chern number 3 phase which increased as criticality was approached.
We present a novel route for attaining unconventional superconductivity (SC) in a strongly correlated system without doping. In a simple model of a correlated band insulator (BI) at half-filling we demonstrate, based on a generalization of the projec ted wavefunctions method, that SC emerges when e-e interactions and the bare band-gap are both much larger than the kinetic energy, provided the system has sufficient frustration against the magnetic order. As the interactions are tuned, SC appears sandwiched between the correlated BI followed by a paramagnetic metal on one side, and a ferrimagnetic metal, antiferromagnetic (AF) half-metal, and AF Mott insulator phases on the other side.
Recently, a homogeneous superfluid state with a single gapless Fermi surface was predicted to be the ground state of an ultracold Fermi gas with spin population imbalance in the regime of molecular Bose-Einstein condensation. We study vortices in thi s novel state using a symmetry-based effective field theory, which captures the low-energy physics of gapless fermions and superfluid phase fluctuations. This theory is applicable to all spin-imbalanced ultracold Fermi gases in the superfluid regime, regardless of whether the original fermion pairing interaction is weak or strong. We find a remarkable, unconventional form of the interaction between vortices. The presence of gapless fermions gives rise to a spatially oscillating potential, akin to the RKKY indirect-exchange interaction in non-magnetic metals. We compare the parameters of the effective theory to the experimentally measurable quantities and further discuss the conditions for the verification of the predicted new feature. Our study opens up an interesting question as to the nature of the vortex lattice resulting from the competition between the usual repulsive logarithmic (2D Coulomb) and predominantly attractive fermion-induced interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا