ﻻ يوجد ملخص باللغة العربية
It is commonly assumed that topological phase transitions in topological superconductors are accompanied by a closing of the topological gap or a change of the symmetry of the system. We demonstrate that an unconventional topological phase transition with neither gap closing nor a change of symmetry is possible. We consider a nanoscopic length ladder of atoms on a superconducting substrate, comprising self-organized magnetic moments coupled to itinerant electrons. For a range of conditions, the ground state of such a system prefers helical magnetic textures, self-sustaining topologically nontrivial phase. Abrupt changes in the magnetic order as a function of induced superconducting pairing or chemical potential can cause topological phase transitions without closing the topological gap. Furthermore, the ground state prefers either parallel or anti-parallel configurations along the rungs, and the anti-parallel configuration causes an emergent time reversal asymmetry protecting Kramers pairs of Majorana zero modes, but in a BDI topological superconductor. We determine the topological invariant and inspect the boundary Majorana zero modes.
We study a chain of magnetic moments exchange coupled to a conventional three dimensional superconductor. In the normal state the chain orders into a collinear configuration, while in the superconducting phase we find that ferromagnetism is unstable
We propose theoretically how unconventional superconducting pairing in a repulsively interacting Hubbard ladder can be enhanced via the application of a Floquet driving. Initially the Hubbard ladder is prepared in its charge-density-wave dominated gr
Proximity-induced superconductivity in three dimensional (3D) topological insulators forms a new quantum phase of matter and accommodates exotic quasiparticles such as Majorana bound states. One of the biggest drawbacks of the commonly studied 3D top
Topological materials have potential applications for quantum technologies. Non-interacting topological materials, such as e.g., topological insulators and superconductors, are classified by means of fundamental symmetry classes. It is instead only p
Topological insulators (TIs) having intrinsic or proximity-coupled s-wave superconductivity host Majorana zero modes (MZMs) at the ends of vortex lines. The MZMs survive up to a critical doping of the TI at which there is a vortex phase transition th