ترغب بنشر مسار تعليمي؟ اضغط هنا

High-efficiency broadband THz emission via diffraction-radiation cavity

76   0   0.0 ( 0 )
 نشر من قبل Yosuke Honda
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accelerator-based terahertz (THz) radiation has been expected to realize a high-power broadband source. Employing a low-emittance and short-bunch electron beam at a high repetition rate, a scheme of coherent diffraction-radiation in an optical cavity layout is proposed. The schemes stimulated radiation process between bunches can greatly enhance the efficiency of the radiation emission. We performed an experiment with a superconducting linac constructed as an energy recovery linac (ERL) test facility. The electron beam passes through small holes in the cavity mirrors without being destroyed. A sharp THz resonance signal, which indicates broadband stimulated radiation correlated with beam deceleration, was observed while scanning the round-trip length of the cavity. This observation proves the efficient beam-to-radiation energy conversion due to the stimulated radiation process.



قيم البحث

اقرأ أيضاً

With a low emittance and short-bunch electron beam at a high repetition rate realized by a superconducting linac, stimulated excitation of an optical cavity at the terahertz spectrum range has been shown. The electron beam passed through small holes in the cavity mirrors without being destroyed. A sharp resonance structure which indicated wide-band stimulated emission via coherent diffraction radiation was observed while scanning the round-trip length of the cavity.
159 - Mengji Chen , Yang Wu , Yang Liu 2018
An ultra-broadband THz emitter covering a wide range of frequencies from 0.1 to 10 THz is highly desired for spectroscopy applications. So far, spintronic THz emitters have been proven as one class of efficient THz sources with a broadband spectrum w hile the performance in the lower frequency range (0.1 to 0.5 THz) limits its applications. In this work, we demonstrate a novel concept of a current-enhanced broad spectrum from spintronic THz emitters combined with semiconductor materials. We observe a 2-3 order enhancement of the THz signals in a lower THz frequency range (0.1 to 0.5 THz), in addition to a comparable performance at higher frequencies from this hybrid emitter. With a bias current, there is a photoconduction contribution from semiconductor materials, which can be constructively interfered with the THz signals generated from the magnetic heterostructures driven by the inverse spin Hall effect. Our findings push forward the utilization of metallic heterostructures-based THz emitters on the ultra-broadband THz emission spectroscopy.
We seek to design experimentally feasible broadband, temporally multiplexed optical quantum memory with near-term applications to telecom bands. Specifically, we devise dispersion compensation for an impedance-matched narrow-band quantum memory by ex ploiting Raman processes over two three-level atomic subensembles, one for memory and the other for dispersion compensation. Dispersion compensation provides impedance matching over more than a full cavity linewidth. Combined with one second spin-coherence lifetime the memory could be capable of power efficiency exceeding 90% leading to 106 modes for temporal multiplexing. Our design could lead to significant multiplexing enhancement for quantum repeaters to be used for telecom quantum networks.
A setup of a unique x-ray source is put forward employing a relativistic electron beam interacting with two counter-propagating laser pulses in the nonlinear few-photon regime. In contrast to Compton scattering (CS) sources, the envisaged x-ray sourc e exhibits an extremely narrow relative bandwidth of $10^{-5}$ to $10^{-4}$, comparable to the x-ray free-electron laser (XFEL). The brilliance of the x-rays can be $2 - 3$ orders of magnitude higher than a state-of-the-art CS source, while the angle spreading of the radiation is much smaller. By tuning the laser intensities and the electron energy, one can realize either a single peak or a comb-like x-ray source around keV energy. The laser intensity and the electron energy in the suggested setup are rather moderate, rendering this scheme compact and table-top size, as opposed to XFEL and synchrotron infrastructures.
Raman interactions in alkali vapours are used in applications such as atomic clocks, optical signal processing, generation of squeezed light and Raman quantum memories for temporal multiplexing. To achieve a strong interaction the alkali ensemble nee ds both a large optical depth and a high level of spin-polarisation. We implement a technique known as quenching using a molecular buffer gas which allows near-perfect spin-polarisation of over $99.5%$ in caesium vapour at high optical depths of up to $sim 2 times 10^5$; a factor of 4 higher than can be achieved without quenching. We use this system to explore efficient light storage with high gain in a GHz bandwidth Raman memory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا