ترغب بنشر مسار تعليمي؟ اضغط هنا

Stimulated excitation of an optical cavity by a multi-bunch electron beam via coherent diffraction radiation process

249   0   0.0 ( 0 )
 نشر من قبل Yosuke Honda
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With a low emittance and short-bunch electron beam at a high repetition rate realized by a superconducting linac, stimulated excitation of an optical cavity at the terahertz spectrum range has been shown. The electron beam passed through small holes in the cavity mirrors without being destroyed. A sharp resonance structure which indicated wide-band stimulated emission via coherent diffraction radiation was observed while scanning the round-trip length of the cavity.

قيم البحث

اقرأ أيضاً

High brightness electron accelerators, such as energy recovery linacs (ERL), often have complex particle distributions that can create difficulties in beam transport as well as matching to devices such as wigglers used to generate radiation from the beam. Optical transition radiation (OTR), OTR interferometry (OTRI) and optical diffraction-transition radiation interferometry (ODTRI) have proven to be effective tools for diagnosing both the spatial and angular distributions of charged particle beams. OTRI and ODTRI have been used to measure rms divergences and optical transverse phase space mapping has been demonstrated using OTRI. In this work we present the results of diagnostic experiments using OTR and ODR conducted at the Jefferson Laboratory 115 MeV ERL which show the presence of two separate components within the spatial and angular distributions of the beam. By assuming a correlation between the spatial and angular features we estimate an rms emittance value for each of the two components.
Accelerator-based terahertz (THz) radiation has been expected to realize a high-power broadband source. Employing a low-emittance and short-bunch electron beam at a high repetition rate, a scheme of coherent diffraction-radiation in an optical cavity layout is proposed. The schemes stimulated radiation process between bunches can greatly enhance the efficiency of the radiation emission. We performed an experiment with a superconducting linac constructed as an energy recovery linac (ERL) test facility. The electron beam passes through small holes in the cavity mirrors without being destroyed. A sharp THz resonance signal, which indicates broadband stimulated radiation correlated with beam deceleration, was observed while scanning the round-trip length of the cavity. This observation proves the efficient beam-to-radiation energy conversion due to the stimulated radiation process.
The AWAKE experiment relies on the self-modulation instability of a long proton bunch to effectively drive wakefields and accelerate an electron bunch to GeV-level energies. During the first experimental run (2016-2018) the instability was made phase reproducible by means of a seeding process: a short laser pulse co-propagates within the proton bunch in a rubidium vapor. Thus, the fast creation of plasma and the onset of beam-plasma interaction within the bunch drives seed wakefields. However, this seeding method leaves the front of the bunch not modulated. The bunch front could self-modulate in a second, preformed plasma and drive wakefields that would interfere with those driven by the (already self-modulated) back of the bunch and with the acceleration process. We present studies of the seeded the self-modulation (SSM) of a long proton bunch using a short electron bunch. The short seed bunch is placed ahead of the proton bunch leading to self-modulation of the entire bunch. Numerical simulations show that this method have other advantages when compared to the ionization front method. We discuss the requirements for the electron bunch parameters (charge, emittance, transverse size at the focal point, length), to effectively seed the self-modulation process. We also present preliminary experimental studies on the electron bunch seed wakefields generation.
Higher-order mode (HOM) based intra-cavity beam diagnostics has been proved effectively and conveniently in superconducting radio-frequency (SRF) accelerators. Our recent research shows that the beam harmonics in the bunch train excited HOM spectrum, which have much higher signal-to-noise ratio than the intrinsic HOM peaks, may also be useful for beam diagnostics. In this paper, we will present our study on bunch train excited HOMs, including the theoretic model and recent experiments carried out based on the DC-SRF photoinjector and SRF linac at Peking University.
Coherent Smith-Purcell radiation generated by bunched electron beam in the lamellar metal and dielectric gratings in the millimeter wavelength range was compared theoretically and experimentally. For theoretical estimation a simple model suitable for both dielectric and metal gratings was developed. Experimental comparison was carried out using extracted bunched 6.1 MeV electron beam of the microtron at Nuclear Physics Institute (Tomsk Polytechnic University). Both theoretical estimations and experimental data showed the difference of the radiation characteristics from the lamellar metal and dielectric gratings. The radiation from the dielectric grating had peak structure not monotonic one and was more intense comparing with metal grating radiation in the wavelength less than coherent threshold. These differences may be useful for research and development of new compact monochromatic radiation sources in sub-THz and THz region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا