ﻻ يوجد ملخص باللغة العربية
In the paper we provide new conditions ensuring the isolated calmness property and the Aubin property of parameterized variational systems with constraints depending, apart from the parameter, also on the solution itself. Such systems include, e.g., quasi-variational inequalities and implicit complementarity problems. Concerning the Aubin property, possible restrictions imposed on the parameter are also admitted. Throughout the paper, tools from the directional limiting generalized differential calculus are employed enabling us to impose only rather weak (non-restrictive) qualification conditions. Despite the very general problem setting, the resulting conditions are workable as documented by some academic examples
In the paper a new sufficient condition for the Aubin property to a class of parameterized variational systems is derived. In these systems the constraints depend both on the parameter as well as on the decision variable itself and they include, e.g.
In this paper, a kind of neural network with time-varying delays is proposed to solve the problems of quadratic programming. The delay term of the neural network changes with time t. The number of neurons in the neural network is n + h, so the struct
We propose the application of occupation measure theory to the classical problem of transient stability analysis for power systems. This enables the computation of certified inner and outer approximations for the region of attraction of a nominal ope
We study two variants of textsc{Maximum Cut}, which we call textsc{Connected Maximum Cut} and textsc{Maximum Minimal Cut}, in this paper. In these problems, given an unweighted graph, the goal is to compute a maximum cut satisfying some connectivity
We propose an extension of the theory of control sets to the case of inputs satisfying a dwell-time constraint. Although the class of such inputs is not closed under concatenation, we propose a suitably modified definition of control sets that allows