ﻻ يوجد ملخص باللغة العربية
We propose an extension of the theory of control sets to the case of inputs satisfying a dwell-time constraint. Although the class of such inputs is not closed under concatenation, we propose a suitably modified definition of control sets that allows to recover some important properties known in the concatenable case. In particular we apply the control set construction to dwell-time linear switched systems, characterizing their maximal Lyapunov exponent looking only at trajectories whose angular component is periodic. We also use such a construction to characterize supports of invariant measures for random switched systems with dwell-time constraints.
This paper deals with the stability analysis problem of discrete-time switched linear systems with ranged dwell time. A novel concept called L-switching-cycle is proposed, which contains sequences of multiple activation cycles satisfying the prescrib
This paper presents an efficient suboptimal model predictive control (MPC) algorithm for nonlinear switched systems subject to minimum dwell time constraints (MTC). While MTC are required for most physical systems due to stability, power and mechanic
Switched systems in which the manipulated control action is the time-depending switching signal describe many engineering problems, mainly related to biomedical applications. In such a context, to control the system means to select an autonomous syst
Motivated by an open problem posed by J.P. Hespanha, we extend the notion of Barabanov norm and extremal trajectory to classes of switching signals that are not closed under concatenation. We use these tools to prove that the finiteness of the L2-gai
We study predictive control in a setting where the dynamics are time-varying and linear, and the costs are time-varying and well-conditioned. At each time step, the controller receives the exact predictions of costs, dynamics, and disturbances for th