ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Aubin property of solution maps to parameterized variational systems with implicit constraints

54   0   0.0 ( 0 )
 نشر من قبل Helmut Gfrerer
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the paper a new sufficient condition for the Aubin property to a class of parameterized variational systems is derived. In these systems the constraints depend both on the parameter as well as on the decision variable itself and they include, e.g., parameter-dependent quasi-variational inequalities and implicit complementarity problems. The result is based on a general condition ensuring the Aubin property of implicitly defined multifunctions which employs the recently introduced notion of the directional limiting coderivative. Our final condition can be verified, however, without an explicit computation of these coderivatives. The procedure is illustrated by an example.



قيم البحث

اقرأ أيضاً

In the paper we provide new conditions ensuring the isolated calmness property and the Aubin property of parameterized variational systems with constraints depending, apart from the parameter, also on the solution itself. Such systems include, e.g., quasi-variational inequalities and implicit complementarity problems. Concerning the Aubin property, possible restrictions imposed on the parameter are also admitted. Throughout the paper, tools from the directional limiting generalized differential calculus are employed enabling us to impose only rather weak (non-restrictive) qualification conditions. Despite the very general problem setting, the resulting conditions are workable as documented by some academic examples
We consider whether algorithmic choices in over-parameterized linear matrix factorization introduce implicit regularization. We focus on noiseless matrix sensing over rank-$r$ positive semi-definite (PSD) matrices in $mathbb{R}^{n times n}$, with a s ensing mechanism that satisfies restricted isometry properties (RIP). The algorithm we study is emph{factored gradient descent}, where we model the low-rankness and PSD constraints with the factorization $UU^top$, for $U in mathbb{R}^{n times r}$. Surprisingly, recent work argues that the choice of $r leq n$ is not pivotal: even setting $U in mathbb{R}^{n times n}$ is sufficient for factored gradient descent to find the rank-$r$ solution, which suggests that operating over the factors leads to an implicit regularization. In this contribution, we provide a different perspective to the problem of implicit regularization. We show that under certain conditions, the PSD constraint by itself is sufficient to lead to a unique rank-$r$ matrix recovery, without implicit or explicit low-rank regularization. emph{I.e.}, under assumptions, the set of PSD matrices, that are consistent with the observed data, is a singleton, regardless of the algorithm used.
We develop a data-driven approach to the computation of a-posteriori feasibility certificates to the solution sets of variational inequalities affected by uncertainty. Specifically, we focus on instances of variational inequalities with a determinist ic mapping and an uncertain feasibility set, and represent uncertainty by means of scenarios. Building upon recent advances in the scenario approach literature, we quantify the robustness properties of the entire set of solutions of a variational inequality, with feasibility set constructed using the scenario approach, against a new unseen realization of the uncertainty. Our results extend existing results that typically impose an assumption that the solution set is a singleton and require certain non-degeneracy properties, and thereby offer probabilistic feasibility guarantees to any feasible solution. We show that assessing the violation probability of an entire set of solutions, rather than of a singleton, requires enumeration of the support constraints that shape this set. Additionally, we propose a general procedure to enumerate the support constraints that does not require a closed form description of the solution set, which is unlikely to be available. We show that robust game theory problems can be modelling via uncertain variational inequalities, and illustrate our theoretical results through extensive numerical simulations on a case study involving an electric vehicle charging coordination problem.
The purpose of this paper is to describe explicitly the solution for linear control systems on Lie groups. In case of linear control systems with inner derivations, the solution is given basically by the product of the exponential of the associated i nvariant system and the exponential of the associated invariant drift field. We present the solutions in low dimensional cases and apply the results to obtain some controllability results.
The paper starts with a concise description of the recently developed semismooth* Newton method for the solution of general inclusions. This method is then applied to a class of variational inequalities of the second kind. As a result, one obtains an implementable algorithm exhibiting a local superlinear convergence. Thereafter we suggest several globally convergent hybrid algorithms in which one combines the semismooth* Newton method with selected splitting algorithms for the solution of monotone variational inequalities. Their efficiency is documented by extensive numerical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا