ترغب بنشر مسار تعليمي؟ اضغط هنا

Space Time Matter inflation

127   0   0.0 ( 0 )
 نشر من قبل Mauricio Bellini
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a model of power-law inflationary inflation using the Space-Time-Matter (STM) theory of gravity for a five dimensional (5D) canonical metric that describes an apparent vacuum. In this approach the expansion is governed by a single scalar (neutral) quantum field. In particular, we study the case where the power of expansion of the universe is $p gg 1$. This kind of model is more successful than others in accounting for galaxy formation.

قيم البحث

اقرأ أيضاً

Using the Ponce de Leon background metric, which describes a 5D universe in an apparent vacuum: $bar{G}_{AB}=0$, we study the effective 4D evolution of both, the inflaton and gauge-invariant scalar metric fluctuations, in the recently introduced model of space time matter inflation.
We study the emission of large-scales wavelength space-time waves during the inflationary expansion of the universe, produced by back-reaction effects. As an example, we study an inflationary model with variable time scale, where the scale factor of the universe grows as a power of time. The coarse-grained field to describe space-time waves is defined by using the Levy distribution, on the wavenumber space. The evolution for the norm of these waves on cosmological scales is calculated, and it is shown that decreases with time.
For the first time, we obtain the analytical form of black hole space-time metric in dark matter halo for the stationary situation. Using the relation between the rotation velocity (in the equatorial plane) and the spherical symmetric space-time metr ic coefficient, we obtain the space-time metric for pure dark matter. By considering the dark matter halo in spherical symmetric space-time as part of the energy-momentum tensors in the Einstein field equation, we then obtain the spherical symmetric black hole solutions in dark matter halo. Utilizing Newman-Jains method, we further generalize spherical symmetric black holes to rotational black holes. As examples, we obtain the space-time metric of black holes surrounded by Cold Dark Matter and Scalar Field Dark Matter halos, respectively. Our main results regarding the interaction between black hole and dark matter halo are as follows: (i) For both dark matter models, the density profile always produces cusp phenomenon in small scale in the relativity situation; (ii) Dark matter halo makes the black hole horizon to increase but the ergosphere to decrease, while the magnitude is small; (iii) Dark matter does not change the singularity of black holes. These results are useful to study the interaction of black hole and dark matter halo in stationary situation. Particularly, the cusp produced in the $0sim 1$ kpc scale would be observable in the Milky Way. Perspectives on future work regarding the applications of our results in astrophysics are also briefly discussed.
We consider the space-condensate inflation model to study the primordial gravitational waves generated in the early Universe. We calculate the energy spectrum of gravitational waves induced by the space-condensate inflation model for full frequency r ange with assumption that the phase transition between two consecutive regimes to be abrupt during evolution of the Universe. The suppression of energy spectrum is found in our model for the decreasing frequency of gravitational waves depending on the model parameter. To realize the suppression of energy spectrum of the primordial gravitational waves, we study an existence of the early phase transition during inflation for the space-condensate inflation model.
Though simple inflationary models describe the CMB well, their corrections are often plagued by infrared effects that obstruct a reliable calculation of late-time behaviour. We adapt to cosmology tools designed to address similar issues in other phys ical systems with the goal of making reliable late-time inflationary predictions. The main such tool is Open EFTs which reduce in the inflationary case to Stochastic Inflation plus calculable corrections. We apply this to a simple inflationary model that is complicated enough to have dangerous IR behaviour yet simple enough to allow the inference of late-time behaviour. We find corrections to standard Stochastic Inflationary predictions for the noise and drift, and we find these corrections ensure the IR finiteness of both these quantities. The late-time probability distribution, ${cal P}(phi)$, for super-Hubble field fluctuations are obtained as functions of the noise and drift and so these too are IR finite. We compare our results to other methods (such as large-$N$ models) and find they agree when these models are reliable. In all cases we can explore in detail we find IR secular effects describe the slow accumulation of small perturbations to give a big effect: a significant distortion of the late-time probability distribution for the field. But the energy density associated with this is only of order $H^4$ at late times and so does {em not} generate a dramatic gravitational back-reaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا