ﻻ يوجد ملخص باللغة العربية
The thermodynamics and weak cosmic censorship conjecture in extended phase spaces of charged anti-de Sitter black holes describing the massive gravity are investigated by the absorptions of the scalar particle and fermion. The cosmological constant is seen as a pressure with a conjugate volume. The first law of thermodynamics is recovered. The second law of thermodynamics is violated in the extended phase space of the extremal black hole. For the near-extremal and extremal black holes, the validity of weak cosmic censorship conjecture is tested by evaluating the minimum values of the metric function $f$. It is found that they remain their near-extremity and extremity when the particles are absorbed.
The thermodynamics and weak cosmic censorship conjecture in Reissner-Nordstr$ddot{o}$m anti-de Sitter black holes are investigated by the scattering of the scalar field. The first law of thermodynamics in the non-extremal Reissner-Nordstr$ddot{o}$m a
In this work we study a homogeneous and quasilocal Thermodynamics associated to the Schwarzschild-anti de Sitter black hole. The usual thermodynamic description is extended within a Hamiltonian approach with the introduction of the cosmological const
We provide a conceptual unified description of the quantum properties of black holes (BH), elementary particles, de Sitter (dS) and Anti de Sitter (AdS) string states.The conducting line of argument is the classical-quantum (de Broglie, Compton) dual
The weak cosmic censorship conjecture in the near-extremal BTZ black hole has been tested by the test particles and fields. It was claimed that this black hole could be overspun. In this paper, we review the thermodynamics and weak cosmic censorship
Robinson-Wilczeks recent work shows that, the energy momentum tensor flux required to cancel gravitational anomaly at the event horizon of a Schwarzschild-type black hole has an equivalent form to that of a (1+1)-dimensional blackbody radiation at th