ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamics and weak cosmic censorship conjecture in Reissner-Nordstr$ddot{o}$m anti-de Sitter black holes with scalar field

67   0   0.0 ( 0 )
 نشر من قبل Deyou Chen
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The thermodynamics and weak cosmic censorship conjecture in Reissner-Nordstr$ddot{o}$m anti-de Sitter black holes are investigated by the scattering of the scalar field. The first law of thermodynamics in the non-extremal Reissner-Nordstr$ddot{o}$m anti-de Sitter black hole is recovered by the scattering. The increase of the horizon radius indicates that the singularity is not naked in this black hole. For the near-extremal and extremal black holes, the validity is tested by the minimum values of the function $f$ at their final states. It is found that both of the near-extremal and extremal black holes can not be overcharged. When $omega=qphi$, the final state of the extremal black hole is still an extremal black hole. When $omega eq qphi$, it becomes a near-extremal black hole with new mass and charge.



قيم البحث

اقرأ أيضاً

76 - Deyou Chen 2019
The thermodynamics and weak cosmic censorship conjecture in extended phase spaces of charged anti-de Sitter black holes describing the massive gravity are investigated by the absorptions of the scalar particle and fermion. The cosmological constant i s seen as a pressure with a conjugate volume. The first law of thermodynamics is recovered. The second law of thermodynamics is violated in the extended phase space of the extremal black hole. For the near-extremal and extremal black holes, the validity of weak cosmic censorship conjecture is tested by evaluating the minimum values of the metric function $f$. It is found that they remain their near-extremity and extremity when the particles are absorbed.
We study the pair production of charged scalar particles from the five-dimensional near extremal Reissner- Nordstrom-Anti de Sitter (RN-AdS5) black hole. The pair production rate and the absorption cross section ratio in the full spacetime are obtain ed and are shown to have proportional relation with their counterparts in the near horizon region. In addition, the holographic descriptions of the pair production both in the IR CFT in the near horizon region and the UV CFT at the asymptotic spatial boundary of the RN-AdS5 black hole are analyzed in the AdS2/CFT1and AdS5/CFT4correspondences, respectively. This work gives a complete description of scalar pair production in the near extremal RN-AdS5black hole.
66 - Deyou Chen 2018
The weak cosmic censorship conjecture in the near-extremal BTZ black hole has been tested by the test particles and fields. It was claimed that this black hole could be overspun. In this paper, we review the thermodynamics and weak cosmic censorship conjecture in BTZ black holes by the scattering of the scalar field. The first law of thermodynamics in the non-extremal BTZ black hole is recovered. For the extremal and near-extremal black holes, due to the divergence of the variation of the entropy, we test the weak cosmic censorship conjecture by evaluating the minimum values of the function $f$. Both of the extremal and near-extremal black holes cannot be overspun.
It has been shown recently that the strong cosmic censorship conjecture is violated by near-extremal Reissner-Nordstrom-de Sitter black holes. We investigate whether the introduction of a charged scalar field can rescue strong cosmic censorship. We f ind that such a field improves the situation but there is always a neighbourhood of extremality in which strong cosmic censorship is violated by perturbations arising from smooth initial data.
In this work we study a homogeneous and quasilocal Thermodynamics associated to the Schwarzschild-anti de Sitter black hole. The usual thermodynamic description is extended within a Hamiltonian approach with the introduction of the cosmological const ant in the thermodynamic phase space. The treatment presented is consistent in as much as it respects the laws of black hole Thermodynamics and accepts the introduction of any thermodynamic potential. We are able to construct new equations of state that characterize the Thermodynamics. Novel phenomena can be expected from the proposed setup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا