ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalies and de Sitter radiation from the generic black holes in de Sitter spaces

223   0   0.0 ( 0 )
 نشر من قبل S. Q. Wu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Robinson-Wilczeks recent work shows that, the energy momentum tensor flux required to cancel gravitational anomaly at the event horizon of a Schwarzschild-type black hole has an equivalent form to that of a (1+1)-dimensional blackbody radiation at the Hawking temperature. Motivated by their work, Hawking radiation from the cosmological horizons of the general Schwarzschild-de Sitter and Kerr-de Sitter black holes, has been studied by the method of anomaly cancellation. The result shows that the absorbing gauge current and energy momentum tensor fluxes required to cancel gauge and gravitational anomalies at the cosmological horizon are precisely equal to those of Hawking radiation from it. It should be emphasized that the effective field theory for generic black holes in de Sitter spaces should be formulated within the region between the event horizon (EH) and the cosmological horizon (CH), to integrate out the classically irrelevant ingoing modes at the EH and the classically irrelevant outgoing modes at the CH, respectively.



قيم البحث

اقرأ أيضاً

Motivated by the success of the recently proposed method of anomaly cancellation to derive Hawking fluxes from black hole horizons of spacetimes in various dimensions, we have further extended the covariant anomaly cancellation method shortly simplif ied by Banerjee and Kulkarni to explore the Hawking radiation of the (3+1)-dimensional charged rotating black strings and their higher dimensional extensions in anti-de Sitter spacetimes, whose horizons are not spherical but can be toroidal, cylindrical or planar, according to their global identifications. It should be emphasized that our analysis presented here is very general in the sense that the determinant of the reduced (1+1)-dimensional effective metric from these black strings need not be equal to one $(sqrt{-g} eq 1)$. Our results indicate that the gauge and energy momentum fluxes needed to cancel the (1+1)-dimensional covariant gauge and gravitational anomalies are compatible with the Hawking fluxes. Besides, thermodynamics of these black strings are studied in the case of a variable cosmological constant.
We study the pair production of charged scalar particles from the five-dimensional near extremal Reissner- Nordstrom-Anti de Sitter (RN-AdS5) black hole. The pair production rate and the absorption cross section ratio in the full spacetime are obtain ed and are shown to have proportional relation with their counterparts in the near horizon region. In addition, the holographic descriptions of the pair production both in the IR CFT in the near horizon region and the UV CFT at the asymptotic spatial boundary of the RN-AdS5 black hole are analyzed in the AdS2/CFT1and AdS5/CFT4correspondences, respectively. This work gives a complete description of scalar pair production in the near extremal RN-AdS5black hole.
Maximally symmetric curved-brane solutions are studied in dilatonic braneworld models which realise the self-tuning of the effective four-dimensional cosmological constant. It is found that no vacua in which the brane has de Sitter or anti-de Sitter geometry exist, unless one modifies the near-boundary asymptotics of the bulk fields. In the holographic dual picture, this corresponds to coupling the UV CFT to a curved metric (possibly with a defect). Alternatively, the same may be achieved in a flat-space QFT with suitable variable scalar sources. With these ingredients, it is found that maximally symmetric, positive and negative curvature solutions with a stabilised brane position generically exist. The space of such solutions is studied in two different types of realisations of the self-tuning framework. In some regimes we observe a large hierarchy between the curvature on the brane and the boundary UV CFT curvature. This is a dynamical effect due to the self-stabilisation mechanism. This setup provides an alternative route to realising de Sitter space in string theory.
Hawking radiation from black hole horizon can be viewed as a quantum tunnelling process, and fermions via tunnelling can successfully recover Hawking temperature. In this paper, considering the tunnelling particles with spin 1/2 (namely, Dirac partic les), we further improve Kerner and Mans fermion tunnelling method to study Hawking radiation via tunnelling from rotating black holes in de Sitter spaces, specifically including that from Kerr de Sitter black hole and Kerr-Newman de Sitter black hole. As a result, Hawking temperatures at the event horizon (EH) and the cosmological horizon (CH) are well described via Dirac particles tunnelling.
507 - V. V. Varlamov 2014
$CPT$ groups for spinor fields in de Sitter and anti-de Sitter spaces are defined in the framework of automorphism groups of Clifford algebras. It is shown that de Sitter spaces with mutually opposite signatures correspond to Clifford algebras with d ifferent algebraic structure that induces an essential difference of $CPT$ groups associated with these spaces. $CPT$ groups for charged particles are considered with respect to phase factors on the various spinor spaces related with real subalgebras of the simple Clifford algebra over the complex field (Dirac algebra). It is shown that $CPT$ groups for neutral particles which admit particle-antiparticle interchange and $CPT$ groups for truly neutral particles are described within semisimple Clifford algebras with quaternionic and real division rings, respectively. A difference between bosonic and fermionic $CPT$ groups is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا