ترغب بنشر مسار تعليمي؟ اضغط هنا

How to Host a Data Competition: Statistical Advice for Design and Analysis of a Data Competition

85   0   0.0 ( 0 )
 نشر من قبل Christine Anderson-Cook
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Data competitions rely on real-time leaderboards to rank competitor entries and stimulate algorithm improvement. While such competitions have become quite popular and prevalent, particularly in supervised learning formats, their implementations by the host are highly variable. Without careful planning, a supervised learning competition is vulnerable to overfitting, where the winning solutions are so closely tuned to the particular set of provided data that they cannot generalize to the underlying problem of interest to the host. This paper outlines some important considerations for strategically designing relevant and informative data sets to maximize the learning outcome from hosting a competition based on our experience. It also describes a post-competition analysis that enables robust and efficient assessment of the strengths and weaknesses of solutions from different competitors, as well as greater understanding of the regions of the input space that are well-solved. The post-competition analysis, which complements the leaderboard, uses exploratory data analysis and generalized linear models (GLMs). The GLMs not only expand the range of results we can explore, they also provide more detailed analysis of individual sub-questions including similarities and differences between algorithms across different types of scenarios, universally easy or hard regions of the input space, and different learning objectives. When coupled with a strategically planned data generation approach, the methods provide richer and more informative summaries to enhance the interpretation of results beyond just the rankings on the leaderboard. The methods are illustrated with a recently completed competition to evaluate algorithms capable of detecting, identifying, and locating radioactive materials in an urban environment.

قيم البحث

اقرأ أيضاً

Spatial prediction of weather-elements like temperature, precipitation, and barometric pressure are generally based on satellite imagery or data collected at ground-stations. None of these data provide information at a more granular or hyper-local re solution. On the other hand, crowdsourced weather data, which are captured by sensors installed on mobile devices and gathered by weather-related mobile apps like WeatherSignal and AccuWeather, can serve as potential data sources for analyzing environmental processes at a hyper-local resolution. However, due to the low quality of the sensors and the non-laboratory environment, the quality of the observations in crowdsourced data is compromised. This paper describes methods to improve hyper-local spatial prediction using this varying-quality noisy crowdsourced information. We introduce a reliability metric, namely Veracity Score (VS), to assess the quality of the crowdsourced observations using a coarser, but high-quality, reference data. A VS-based methodology to analyze noisy spatial data is proposed and evaluated through extensive simulations. The merits of the proposed approach are illustrated through case studies analyzing crowdsourced daily average ambient temperature readings for one day in the contiguous United States.
This paper describes an open data set of 3,053 energy meters from 1,636 non-residential buildings with a range of two full years (2016 and 2017) at an hourly frequency (17,544 measurements per meter resulting in approximately 53.6 million measurement s). These meters were collected from 19 sites across North America and Europe, with one or more meters per building measuring whole building electrical, heating and cooling water, steam, and solar energy as well as water and irrigation meters. Part of these data were used in the Great Energy Predictor III (GEPIII) competition hosted by the ASHRAE organization in October-December 2019. GEPIII was a machine learning competition for long-term prediction with an application to measurement and verification. This paper describes the process of data collection, cleaning, and convergence of time-series meter data, the meta-data about the buildings, and complementary weather data. This data set can be used for further prediction benchmarking and prototyping as well as anomaly detection, energy analysis, and building type classification.
Algorithms often have tunable parameters that impact performance metrics such as runtime and solution quality. For many algorithms used in practice, no parameter settings admit meaningful worst-case bounds, so the parameters are made available for th e user to tune. Alternatively, parameters may be tuned implicitly within the proof of a worst-case approximation ratio or runtime bound. Worst-case instances, however, may be rare or nonexistent in practice. A growing body of research has demonstrated that data-driven algorithm design can lead to significant improvements in performance. This approach uses a training set of problem instances sampled from an unknown, application-specific distribution and returns a parameter setting with strong average performance on the training set. We provide a broadly applicable theory for deriving generalization guarantees that bound the difference between the algorithms average performance over the training set and its expected performance. Our results apply no matter how the parameters are tuned, be it via an automated or manual approach. The challenge is that for many types of algorithms, performance is a volatile function of the parameters: slightly perturbing the parameters can cause large changes in behavior. Prior research has proved generalization bounds by employing case-by-case analyses of greedy algorithms, clustering algorithms, integer programming algorithms, and selling mechanisms. We uncover a unifying structure which we use to prove extremely general guarantees, yet we recover the bounds from prior research. Our guarantees apply whenever an algorithms performance is a piecewise-constant, -linear, or -- more generally -- piecewise-structured function of its parameters. Our theory also implies novel bounds for voting mechanisms and dynamic programming algorithms from computational biology.
We derive an online learning algorithm with improved regret guarantees for `easy loss sequences. We consider two types of `easiness: (a) stochastic loss sequences and (b) adversarial loss sequences with small effective range of the losses. While a nu mber of algorithms have been proposed for exploiting small effective range in the full information setting, Gerchinovitz and Lattimore [2016] have shown the impossibility of regret scaling with the effective range of the losses in the bandit setting. We show that just one additional observation per round is sufficient to circumvent the impossibility result. The proposed Second Order Difference Adjustments (SODA) algorithm requires no prior knowledge of the effective range of the losses, $varepsilon$, and achieves an $O(varepsilon sqrt{KT ln K}) + tilde{O}(varepsilon K sqrt[4]{T})$ expected regret guarantee, where $T$ is the time horizon and $K$ is the number of actions. The scaling with the effective loss range is achieved under significantly weaker assumptions than those made by Cesa-Bianchi and Shamir [2018] in an earlier attempt to circumvent the impossibility result. We also provide a regret lower bound of $Omega(varepsilonsqrt{T K})$, which almost matches the upper bound. In addition, we show that in the stochastic setting SODA achieves an $Oleft(sum_{a:Delta_a>0} frac{K^3 varepsilon^2}{Delta_a}right)$ pseudo-regret bound that holds simultaneously with the adversarial regret guarantee. In other words, SODA is safe against an unrestricted oblivious adversary and provides improved regret guarantees for at least two different types of `easiness simultaneously.
Segmented regression is a standard statistical procedure used to estimate the effect of a policy intervention on time series outcomes. This statistical method assumes the normality of the outcome variable, a large sample size, no autocorrelation in t he observations, and a linear trend over time. Also, segmented regression is very sensitive to outliers. In a small sample study, if the outcome variable does not follow a Gaussian distribution, then using segmented regression to estimate the intervention effect leads to incorrect inferences. To address the small sample problem and non-normality in the outcome variable, including outliers, we describe and develop a robust statistical method to estimate the policy intervention effect in a series of longitudinal data. A simulation study is conducted to demonstrate the effect of outliers and non-normality in the outcomes by calculating the power of the test statistics with the segmented regression and the proposed robust statistical methods. Moreover, since finding the sampling distribution of the proposed robust statistic is analytically difficult, we use a nonparametric bootstrap technique to study the properties of the sampling distribution and make statistical inferences. Simulation studies show that the proposed method has more power than the standard t-test used in segmented regression analysis under the non-normality error distribution. Finally, we use the developed technique to estimate the intervention effect of the Istanbul Declaration on illegal organ activities. The robust method detected more significant effects compared to the standard method and provided shorter confidence intervals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا