ﻻ يوجد ملخص باللغة العربية
Data competitions rely on real-time leaderboards to rank competitor entries and stimulate algorithm improvement. While such competitions have become quite popular and prevalent, particularly in supervised learning formats, their implementations by the host are highly variable. Without careful planning, a supervised learning competition is vulnerable to overfitting, where the winning solutions are so closely tuned to the particular set of provided data that they cannot generalize to the underlying problem of interest to the host. This paper outlines some important considerations for strategically designing relevant and informative data sets to maximize the learning outcome from hosting a competition based on our experience. It also describes a post-competition analysis that enables robust and efficient assessment of the strengths and weaknesses of solutions from different competitors, as well as greater understanding of the regions of the input space that are well-solved. The post-competition analysis, which complements the leaderboard, uses exploratory data analysis and generalized linear models (GLMs). The GLMs not only expand the range of results we can explore, they also provide more detailed analysis of individual sub-questions including similarities and differences between algorithms across different types of scenarios, universally easy or hard regions of the input space, and different learning objectives. When coupled with a strategically planned data generation approach, the methods provide richer and more informative summaries to enhance the interpretation of results beyond just the rankings on the leaderboard. The methods are illustrated with a recently completed competition to evaluate algorithms capable of detecting, identifying, and locating radioactive materials in an urban environment.
Spatial prediction of weather-elements like temperature, precipitation, and barometric pressure are generally based on satellite imagery or data collected at ground-stations. None of these data provide information at a more granular or hyper-local re
This paper describes an open data set of 3,053 energy meters from 1,636 non-residential buildings with a range of two full years (2016 and 2017) at an hourly frequency (17,544 measurements per meter resulting in approximately 53.6 million measurement
Algorithms often have tunable parameters that impact performance metrics such as runtime and solution quality. For many algorithms used in practice, no parameter settings admit meaningful worst-case bounds, so the parameters are made available for th
We derive an online learning algorithm with improved regret guarantees for `easy loss sequences. We consider two types of `easiness: (a) stochastic loss sequences and (b) adversarial loss sequences with small effective range of the losses. While a nu
Segmented regression is a standard statistical procedure used to estimate the effect of a policy intervention on time series outcomes. This statistical method assumes the normality of the outcome variable, a large sample size, no autocorrelation in t