ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of string links up to $2n$-moves and link-homotopy

144   0   0.0 ( 0 )
 نشر من قبل Kodai Wada
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Two string links are equivalent up to $2n$-moves and link-homotopy if and only if their all Milnor link-homotopy invariants are congruent modulo $n$. Moreover, the set of the equivalence classes forms a finite group generated by elements of order $n$. The classification induces that if two string links are equivalent up to $2n$-moves for every $n>0$, then they are link-homotopic.



قيم البحث

اقرأ أيضاً

In a previous paper, the authors proved that Milnor link-homotopy invariants modulo $n$ classify classical string links up to $2n$-move and link-homotopy. As analogues to the welded case, in terms of Milnor invariants, we give here two classification s of welded string links up to $2n$-move and self-crossing virtualization, and up to $V^{n}$-move and self-crossing virtualization, respectively.
The $Xi$-move is a local move which refines the usual forbidden moves in virtual knot theory. This move was introduced by Taniguchi and the second author, who showed that it characterizes the information contained by the odd writhe of virtual knots, a fundamental invariant defined by Kauffman. In this paper, we extend this result by classifying $2$-component virtual links up to $Xi$-moves, using refinements of the odd writhe and linking numbers.
Ribbon 2-knotted objects are locally flat embeddings of surfaces in 4-space which bound immersed 3-manifolds with only ribbon singularities. They appear as topological realizations of welded knotted objects, which is a natural quotient of virtual kno t theory. In this paper we consider ribbon tubes and ribbon torus-links, which are natural analogues of string links and links, respectively. We show how ribbon tubes naturally act on the reduced free group, and how this action classifies ribbon tubes up to link-homotopy, that is when allowing each component to cross itself. At the combinatorial level, this provides a classification of welded string links up to self-virtualization. This generalizes a result of Habegger and Lin on usual string links, and the above-mentioned action on the reduced free group can be refined to a general virtual extension of Milnor invariants. As an application, we obtain a classification of ribbon torus-links up to link-homotopy.
Two links are link-homotopic if they are transformed into each other by a sequence of self-crossing changes and ambient isotopies. The link-homotopy classes of 4-component links were classified by Levine with enormous algebraic computations. We modif y the results by using Habiros clasper theory. The new classification gives more symmetrical and schematic points of view to the link-homotopy classes of 4-component links. As applications, we give several new subsets of the link-homotopy classes of 4-component links which are classified by comparable invariants and give an algorithm which determines whether given two links are link-homotopic or not.
We consider knotted annuli in 4-space, called 2-string-links, which are knotted surfaces in codimension two that are naturally related, via closure operations, to both 2-links and 2-torus links. We classify 2-string-links up to link-homotopy by means of a 4-dimensional version of Milnor invariants. The key to our proof is that any 2-string link is link-homotopic to a ribbon one; this allows to use the homotopy classification obtained in the ribbon case by P. Bellingeri and the authors. Along the way, we give a Roseman-type result for immersed surfaces in 4-space. We also discuss the case of ribbon k-string links, for $kgeq 3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا