ترغب بنشر مسار تعليمي؟ اضغط هنا

Homotopy classification of ribbon tubes and welded string links

274   0   0.0 ( 0 )
 نشر من قبل Benjamin Audoux
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Ribbon 2-knotted objects are locally flat embeddings of surfaces in 4-space which bound immersed 3-manifolds with only ribbon singularities. They appear as topological realizations of welded knotted objects, which is a natural quotient of virtual knot theory. In this paper we consider ribbon tubes and ribbon torus-links, which are natural analogues of string links and links, respectively. We show how ribbon tubes naturally act on the reduced free group, and how this action classifies ribbon tubes up to link-homotopy, that is when allowing each component to cross itself. At the combinatorial level, this provides a classification of welded string links up to self-virtualization. This generalizes a result of Habegger and Lin on usual string links, and the above-mentioned action on the reduced free group can be refined to a general virtual extension of Milnor invariants. As an application, we obtain a classification of ribbon torus-links up to link-homotopy.



قيم البحث

اقرأ أيضاً

Two string links are equivalent up to $2n$-moves and link-homotopy if and only if their all Milnor link-homotopy invariants are congruent modulo $n$. Moreover, the set of the equivalence classes forms a finite group generated by elements of order $n$ . The classification induces that if two string links are equivalent up to $2n$-moves for every $n>0$, then they are link-homotopic.
In a previous paper, the authors proved that Milnor link-homotopy invariants modulo $n$ classify classical string links up to $2n$-move and link-homotopy. As analogues to the welded case, in terms of Milnor invariants, we give here two classification s of welded string links up to $2n$-move and self-crossing virtualization, and up to $V^{n}$-move and self-crossing virtualization, respectively.
Let $n$ be a positive integer. The aim of this paper is to study two local moves $V(n)$ and $V^{n}$ on welded links, which are generalizations of the crossing virtualization. We show that the $V(n)$-move is an unknotting operation on welded knots for any $n$, and give a classification of welded links up to $V(n)$-moves. On the other hand, we give a necessary condition for which two welded links are equivalent up to $V^{n}$-moves. This leads to show that the $V^{n}$-move is not an unknotting operation on welded knots except for $n=1$. We also discuss relations among $V^{n}$-moves, associated core groups and the multiplexing of crossings.
We introduce a new equivalence relation on decorated ribbon graphs, and show that its equivalence classes directly correspond to virtual links. We demonstrate how this correspondence can be used to convert any invariant of virtual links into an invariant of ribbon graphs, and vice versa.
We show that if a link J in the 3-sphere is homotopy ribbon concordant to a link L then the Alexander polynomial of L divides the Alexander polynomial of J.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا