ترغب بنشر مسار تعليمي؟ اضغط هنا

On codimension two embeddings up to link-homotopy

60   0   0.0 ( 0 )
 نشر من قبل Benjamin Audoux
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider knotted annuli in 4-space, called 2-string-links, which are knotted surfaces in codimension two that are naturally related, via closure operations, to both 2-links and 2-torus links. We classify 2-string-links up to link-homotopy by means of a 4-dimensional version of Milnor invariants. The key to our proof is that any 2-string link is link-homotopic to a ribbon one; this allows to use the homotopy classification obtained in the ribbon case by P. Bellingeri and the authors. Along the way, we give a Roseman-type result for immersed surfaces in 4-space. We also discuss the case of ribbon k-string links, for $kgeq 3$.



قيم البحث

اقرأ أيضاً

Two string links are equivalent up to $2n$-moves and link-homotopy if and only if their all Milnor link-homotopy invariants are congruent modulo $n$. Moreover, the set of the equivalence classes forms a finite group generated by elements of order $n$ . The classification induces that if two string links are equivalent up to $2n$-moves for every $n>0$, then they are link-homotopic.
A neighborhood homotopy is an equivalence relation on spatial graphs which is generated by crossing changes on the same component and neighborhood equivalence. We give a complete classification of all 2-component spatial graphs up to neighborhood hom otopy by the elementary divisor of a linking matrix with respect to the first homology group of each of the connected components. This also leads a kind of homotopy classification of 2-component handlebody-links.
Two links are link-homotopic if they are transformed into each other by a sequence of self-crossing changes and ambient isotopies. The link-homotopy classes of 4-component links were classified by Levine with enormous algebraic computations. We modif y the results by using Habiros clasper theory. The new classification gives more symmetrical and schematic points of view to the link-homotopy classes of 4-component links. As applications, we give several new subsets of the link-homotopy classes of 4-component links which are classified by comparable invariants and give an algorithm which determines whether given two links are link-homotopic or not.
We give a new and detailed description of the structure of cut loci, with direct applications to the singular sets of some Hamilton-Jacobi equations. These sets may be non-triangulable, but a local description at all points except for a set of Hausdo rff dimension $n-2$ is well known. We go further in this direction by giving a clasification of all points up to a set of Hausdorff dimension $n-3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا