ﻻ يوجد ملخص باللغة العربية
The permeability is one of the most fundamental transport properties in soft matter physics, material engineering, and nanofluidics. Here we report by means of Langevin simulations of ideal penetrants in a nanoscale membrane made of a fixed lattice of attractive interaction sites, how the permeability can be massively tuned, even minimized or maximized, by tailoring the potential energy landscape for the diffusing penetrants, depending on the membrane attraction, topology, and density. Supported by limiting scaling theories we demonstrate that the observed non-monotonic behavior and the occurrence of extreme values of the permeability is far from trivial and triggered by a strong anti-correlation and substantial (orders of magnitude) cancellation between penetrant partitioning and diffusivity, especially within dense and highly attractive membranes.
The permeability anisotropy that results from a shear displacement u between the complementary self-affine walls of a rough fracture is investigated. Experiments in which a dyed fluid displaces a transparent one as it is radially injected into a tran
The uptake and sorption of charged molecules by responsive polymer membranes and hydrogels in aqueous solutions is of key importance for the development of soft functional materials. Here we investigate the partitioning of simple monoatomic (Na$^+$,
Two-dimensional crystalline membranes have recently been realized experimentally in such systems as graphene and molybdenum disulfide, sparking a resurgence in interest in their statistical properties. Thermal fluctuations can significantly affect th
For a wide range of modern soft functional materials the selective transport of sub-nanometer-sized molecules (`penetrants) through a stimuli-responsive polymeric membrane is key to the desired function. In this study, we investigate the diffusion pr
In this paper, we study the effects of both the amount of open cell walls and their aperture sizes on solid foams permeability. FEM flow simulations are performed at both pore and macroscopic scales. For foams with fully interconnected pores, we obta