ترغب بنشر مسار تعليمي؟ اضغط هنا

Aqueous Nanoclusters Govern Ion Partitioning in Dense Polymer Membranes

91   0   0.0 ( 0 )
 نشر من قبل Matej Kanduc
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The uptake and sorption of charged molecules by responsive polymer membranes and hydrogels in aqueous solutions is of key importance for the development of soft functional materials. Here we investigate the partitioning of simple monoatomic (Na$^+$, K$^+$, Cs$^+$, Cl$^-$, I$^-$) and one molecular ion (4-nitrophenolate; NP$^-$) within a dense, electroneutral poly($N$-isopropylacrylamide) membrane using explicit-water molecular dynamics simulations. Inside the predominantly hydrophobic environment water distributes in a network of polydisperse water nanoclusters. The average cluster size determines the mean electrostatic self-energy of the simple ions, which preferably reside deeply inside them; we therefore find substantially larger partition ratios $Ksimeq>$10$^{-1}$ than expected from a simple Born picture using a uniform dielectric constant. Despite their irregular shapes we observe that the water clusters possess a universal negative electrostatic potential with respect to their surrounding, as is known for aqueous liquid-vapor interfaces. This potential, which we find concealed in cases of symmetric monoatomic salts, can dramatically impact the transfer free energies of larger charged molecules because of their weak hydration and increased affinity to interfaces. Consequently, and in stark contrast to the simple ions, the molecular ion NP$^-$ can have a partition ratio much larger than unity, $Ksimeq>$10-30 (depending on the cation type) or even $10^3$ in excess of monovalent salt, which explains recent observations of enhanced reaction kinetics of NP$^-$ reduction catalyzed within dense polymer networks. These results also suggest that ionizing a molecule can even enhance the partitioning in a collapsed, rather hydrophobic gel, which strongly challenges the traditional simplistic reasoning.



قيم البحث

اقرأ أيضاً

We study the partitioning of cosolute particles in a thin film of a semi-flexible polymer network by a combination of coarse-grained (implicit-solvent) stochastic dynamics simulations and mean-field theory. We focus on a wide range of solvent qualiti es and cosolute-network interactions for selected polymer flexibilities. Our investigated ensemble (isothermal-isobaric) allows the network to undergo a volume transition from extended to collapsed state while the cosolutes can distribute in bulk and network, correspondingly. We find a rich topology of equilibrium states of the network and transitions between them, qualitatively depending on solvent quality, polymer flexibility, and cosolute-network interactions. In particular, we find a novel `cosolute-induced collapsed state, where strongly attractive cosolutes bridge network monomers albeit the latter interact mutually repulsive. Finally, the cosolutes global partitioning `landscape, computed as a function of solvent quality and cosolute-network interactions, exhibits very different topologies depending on polymer flexibility. The simulation results are supported by theoretical predictions obtained with a two-component mean-field approximation for the Helmholtz free energy that considers the chain elasticity and the particle interactions in terms of a virial expansion. Our findings have implications on the interpretation of transport processes and permeability in hydrogel films, as realized in filtration or macromolecular carrier systems.
Angular correlations in dense solutions and melts of flexible polymer chains are investigated with respect to the distance $r$ between the bonds by comparing quantitative predictions of perturbation calculations with numerical data obtained by Monte Carlo simulation of the bond-fluctuation model. We consider both monodisperse systems and grand-canonical (Flory-distributed) equilibrium polymers. Density effects are discussed as well as finite chain length corrections. The intrachain bond-bond correlation function $P(r)$ is shown to decay as $P(r) sim 1/r^3$ for $xi ll r ll r^*$ with $xi$ being the screening length of the density fluctuations and $r^* sim N^{1/3}$ a novel length scale increasing slowly with (mean) chain length $N$.
The scaling of the bond-bond correlation function $C(s)$ along linear polymer chains is investigated with respect to the curvilinear distance, $s$, along the flexible chain and the monomer density, $rho$, via Monte Carlo and molecular dynamics simula tions. % Surprisingly, the correlations in dense three dimensional solutions are found to decay with a power law $C(s) sim s^{-omega}$ with $omega=3/2$ and the exponential behavior commonly assumed is clearly ruled out for long chains. % In semidilute solutions, the density dependent scaling of $C(s) approx g^{-omega_0} (s/g)^{-omega}$ with $omega_0=2-2 u=0.824$ ($ u=0.588$ being Florys exponent) is set by the number of monomers $g(rho)$ contained in an excluded volume blob of size $xi$. % Our computational findings compare well with simple scaling arguments and perturbation calculation. The power-law behavior is due to self-interactions of chains on distances $s gg g$ caused by the connectivity of chains and the incompressibility of the melt. %
In the popular solution-diffusion picture, the membrane permeability is defined as the product of the partition ratio and the diffusivity of penetrating solutes inside the membrane in the linear response regime, i.e., in equilibrium. However, of prac tical importance is the penetrants flux across the membrane driven by external forces. Here, we study nonequilibrium membrane permeation orchestrated by a uniform external driving field using molecular computer simulations and continuum (Smoluchowski) theory in the stationary state. In the simulations, we explicitly resolve the penetrants transport across a finite monomer-resolved polymer network, addressing one-component penetrant systems and mixtures. We introduce and discuss possible definitions of nonequilibrium, force-dependent permeability, representing `system and `membrane permeability. In particular, we present for the first time a definition of the differential permeability response to the force. We demonstrate that the latter turns out to be significantly nonlinear for low-permeable systems, leading to a high amount of selectiveness in permeability, called `permselectivity, and is tunable by the driving force. Our continuum-level analytical solutions exhibit remarkable qualitative agreement with the penetrant- and polymer-resolved simulations, thereby allowing us to characterize the underlying mechanism of permeabilities and steady-state transport beyond the linear response level.
Ion-pairing is commonly considered as a culprit for the reduced ionic conductivity in polymer electrolyte systems. However, this simple thermodynamic picture should not be taken literally, as ion-pairing is a dynamical phenomenon. Here we construct m odel PEO-LiTFSI systems with different degree of ion-pairing by tuning solvent polarity, and examine the relation between the cation-anion distinct conductivity $sigma^rm{d}_{+-}$ and the lifetime of ion-pairs $tau_{+-}$ using molecular dynamics simulations. It is found that there exist two distinct regimes where $sigma^rm{d}_{+-}$ scales with $1/tau_{+-}$ and $tau_{+-}$ respectively, and the latter is a signature of longer-lived ion-pairs which contribute negatively to the total ionic conductivity. This suggests that ion-pairs are kinetically different depending on the solvent polarity, which renders the ion-pair lifetime highly important when discussing its effect on ion transport in polymer electrolyte systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا