ﻻ يوجد ملخص باللغة العربية
Two-dimensional crystalline membranes have recently been realized experimentally in such systems as graphene and molybdenum disulfide, sparking a resurgence in interest in their statistical properties. Thermal fluctuations can significantly affect the effective mechanical properties of properly thermalized membranes, renormalizing both bending rigidity and elastic moduli so that in particular they become stiffer to bending than their bare bending rigidity would suggest. We use molecular dynamics simulations to examine how the mechanical behavior of thermalized two-dimensional clamped ribbons (cantilevers) depends on their precise topology and geometry. We find that a simple slit smooths roughness as measured by the variance of height fluctuations. This counterintuitive effect may be due to the counter-posed coupling of the lips of the slit to twist in the intact regions of the ribbon.
A basic paradigm underlying the Hookean mechanics of amorphous, isotropic solids is that small deformations are proportional to the magnitude of external forces. However, slender bodies may undergo large deformations even under minute forces, leading
Complexation of polymers at liquid interfaces is an emerging technique to produce all-liquid printable and self-healing devices and membranes. It is crucial to control the assembly process but the mechanisms at play remain unclear. Using two differen
Spider silk possesses unique mechanical properties like large extensibility, high tensile strength, super-contractility, etc. Understanding these mechanical responses require characterization of the rheological properties of silk beyond the simple fo
In this study, we use the transient thermal grating optical technique textemdash a non-contact, laser-based thermal metrology technique with intrinsically high accuracy textemdash to investigate room-temperature phonon-mediated thermal transport in t
We develop general methods to calculate the mobilities of extended bodies in (or associated with) membranes and films. We demonstrate a striking difference between in-plane motion of rod-like inclusions and the corresponding case of bulk (three-dimen