ترغب بنشر مسار تعليمي؟ اضغط هنا

Average four-genus of two-bridge knots

126   0   0.0 ( 0 )
 نشر من قبل Lukas Lewark
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that the expected value of the ratio between the smooth four-genus and the Seifert genus of two-bridge knots tends to zero as the crossing number tends to infinity.



قيم البحث

اقرأ أيضاً

We show that every two-bridge knot $K$ of crossing number $N$ admits a polynomial parametrization $x=T_3(t), y = T_b(t), z =C(t)$ where $T_k(t)$ are the Chebyshev polynomials and $b+deg C = 3N$. If $C (t)= T_c(t)$ is a Chebyshev polynomial, we call s uch a knot a harmonic knot. We give the classification of harmonic knots for $a le 3.$ Most results are derived from continued fractions and their matrix representations.
We study the degree of polynomial representations of knots. We obtain the lexicographic degree for two-bridge torus knots and generalized twist knots. The proof uses the braid theoretical method developed by Orevkov to study real plane curves, combin ed with previous results from [KP10] and [BKP14]. We also give a sharp lower bound for the lexicographic degree of any knot, using real polynomial curves properties.
We study the degree of polynomial representations of knots. We give the lexicographic degree of all two-bridge knots with 11 or fewer crossings. First, we estimate the total degree of a lexicographic parametrisation of such a knot. This allows us to transform this problem into a study of real algebraic trigonal plane curves, and in particular to use the braid theoretical method developed by Orevkov.
214 - Jennifer Schultens 2001
We provide a new proof of the following results of H. Schubert: If K is a satellite knot with companion J and pattern L that lies in a solid torus T in which it has index k, then the bridge numbers satisfy the following: 1) The bridge number of K is greater than or equal to the product of k and the bridge number of J; 2) If K is a composite knot (this is the case k = 1), then the bridge number of K is one less than the sum of the bridge numbers of J and L.
193 - Youlin Li , Jiajun Wang 2011
In this paper, the support genus of all Legendrian right handed trefoil knots and some other Legendrian knots is computed. We give examples of Legendrian knots in the three-sphere with the standard contact structure which have positive support genus with arbitrarily negative Thurston-Benniquin invariant. This answers a question in Onaran.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا