ﻻ يوجد ملخص باللغة العربية
We study the degree of polynomial representations of knots. We give the lexicographic degree of all two-bridge knots with 11 or fewer crossings. First, we estimate the total degree of a lexicographic parametrisation of such a knot. This allows us to transform this problem into a study of real algebraic trigonal plane curves, and in particular to use the braid theoretical method developed by Orevkov.
We study the degree of polynomial representations of knots. We obtain the lexicographic degree for two-bridge torus knots and generalized twist knots. The proof uses the braid theoretical method developed by Orevkov to study real plane curves, combin
We show that every two-bridge knot $K$ of crossing number $N$ admits a polynomial parametrization $x=T_3(t), y = T_b(t), z =C(t)$ where $T_k(t)$ are the Chebyshev polynomials and $b+deg C = 3N$. If $C (t)= T_c(t)$ is a Chebyshev polynomial, we call s
We prove that the expected value of the ratio between the smooth four-genus and the Seifert genus of two-bridge knots tends to zero as the crossing number tends to infinity.
We provide a new proof of the following results of H. Schubert: If K is a satellite knot with companion J and pattern L that lies in a solid torus T in which it has index k, then the bridge numbers satisfy the following: 1) The bridge number of K is
We improve the upper bound on the superbridge index $sb[K]$ of a knot type $[K]$ in terms of the bridge index $b[K]$ from $sb[K] leq 5b -3$ to $sb[K]leq 3b[k] - 1$.