ﻻ يوجد ملخص باللغة العربية
We show that every two-bridge knot $K$ of crossing number $N$ admits a polynomial parametrization $x=T_3(t), y = T_b(t), z =C(t)$ where $T_k(t)$ are the Chebyshev polynomials and $b+deg C = 3N$. If $C (t)= T_c(t)$ is a Chebyshev polynomial, we call such a knot a harmonic knot. We give the classification of harmonic knots for $a le 3.$ Most results are derived from continued fractions and their matrix representations.
A Chebyshev knot is a knot which admits a parametrization of the form $ x(t)=T_a(t); y(t)=T_b(t) ; z(t)= T_c(t + phi), $ where $a,b,c$ are pairwise coprime, $T_n(t)$ is the Chebyshev polynomial of degree $n,$ and $phi in RR .$ Chebyshev knots are n
We prove that the expected value of the ratio between the smooth four-genus and the Seifert genus of two-bridge knots tends to zero as the crossing number tends to infinity.
A Chebyshev curve C(a,b,c,phi) has a parametrization of the form x(t)=Ta(t); y(t)=T_b(t) ; z(t)= Tc(t + phi), where a,b,c are integers, Tn(t) is the Chebyshev polynomial of degree n and phi in RR. When C(a,b,c,phi) has no double points, it defines a
We study the degree of polynomial representations of knots. We obtain the lexicographic degree for two-bridge torus knots and generalized twist knots. The proof uses the braid theoretical method developed by Orevkov to study real plane curves, combin
A Chebyshev knot ${cal C}(a,b,c,phi)$ is a knot which has a parametrization of the form $ x(t)=T_a(t); y(t)=T_b(t) ; z(t)= T_c(t + phi), $ where $a,b,c$ are integers, $T_n(t)$ is the Chebyshev polynomial of degree $n$ and $phi in R.$ We show that any