ترغب بنشر مسار تعليمي؟ اضغط هنا

Chebyshev diagrams for two-bridge knots

108   0   0.0 ( 0 )
 نشر من قبل Pierre-Vincent Koseleff
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that every two-bridge knot $K$ of crossing number $N$ admits a polynomial parametrization $x=T_3(t), y = T_b(t), z =C(t)$ where $T_k(t)$ are the Chebyshev polynomials and $b+deg C = 3N$. If $C (t)= T_c(t)$ is a Chebyshev polynomial, we call such a knot a harmonic knot. We give the classification of harmonic knots for $a le 3.$ Most results are derived from continued fractions and their matrix representations.



قيم البحث

اقرأ أيضاً

A Chebyshev knot is a knot which admits a parametrization of the form $ x(t)=T_a(t); y(t)=T_b(t) ; z(t)= T_c(t + phi), $ where $a,b,c$ are pairwise coprime, $T_n(t)$ is the Chebyshev polynomial of degree $n,$ and $phi in RR .$ Chebyshev knots are n on compact analogues of the classical Lissajous knots. We show that there are infinitely many Chebyshev knots with $phi = 0.$ We also show that every knot is a Chebyshev knot.
We prove that the expected value of the ratio between the smooth four-genus and the Seifert genus of two-bridge knots tends to zero as the crossing number tends to infinity.
A Chebyshev curve C(a,b,c,phi) has a parametrization of the form x(t)=Ta(t); y(t)=T_b(t) ; z(t)= Tc(t + phi), where a,b,c are integers, Tn(t) is the Chebyshev polynomial of degree n and phi in RR. When C(a,b,c,phi) has no double points, it defines a polynomial knot. We determine all possible knots when a, b and c are given.
We study the degree of polynomial representations of knots. We obtain the lexicographic degree for two-bridge torus knots and generalized twist knots. The proof uses the braid theoretical method developed by Orevkov to study real plane curves, combin ed with previous results from [KP10] and [BKP14]. We also give a sharp lower bound for the lexicographic degree of any knot, using real polynomial curves properties.
A Chebyshev knot ${cal C}(a,b,c,phi)$ is a knot which has a parametrization of the form $ x(t)=T_a(t); y(t)=T_b(t) ; z(t)= T_c(t + phi), $ where $a,b,c$ are integers, $T_n(t)$ is the Chebyshev polynomial of degree $n$ and $phi in R.$ We show that any two-bridge knot is a Chebyshev knot with $a=3$ and also with $a=4$. For every $a,b,c$ integers ($a=3, 4$ and $a$, $b$ coprime), we describe an algorithm that gives all Chebyshev knots $cC(a,b,c,phi)$. We deduce a list of minimal Chebyshev representations of two-bridge knots with small crossing number.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا