ﻻ يوجد ملخص باللغة العربية
We propose a novel exponentially-modified Gaussian (EMG) mixture residual model. The EMG mixture is well suited to model residuals that are contaminated by a distribution with positive support. This is in contrast to commonly used robust residual models, like the Huber loss or $ell_1$, which assume a symmetric contaminating distribution and are otherwise asymptotically biased. We propose an expectation-maximization algorithm to optimize an arbitrary model with respect to the EMG mixture. We apply the approach to linear regression and probabilistic matrix factorization (PMF). We compare against other residual models, including quantile regression. Our numerical experiments demonstrate the strengths of the EMG mixture on both tasks. The PMF model arises from considering spectroscopic data. In particular, we demonstrate the effectiveness of PMF in conjunction with the EMG mixture model on synthetic data and two real-world applications: X-ray diffraction and Raman spectroscopy. We show how our approach is effective in inferring background signals and systematic errors in data arising from these experimental settings, dramatically outperforming existing approaches and revealing the datas physically meaningful components.
Generalized Chinese Remainder Theorem (CRT) has been shown to be a powerful approach to solve the ambiguity resolution problem. However, with its close relationship to number theory, study in this area is mainly from a coding theory perspective under
We consider the problem of clustering datasets in the presence of arbitrary outliers. Traditional clustering algorithms such as k-means and spectral clustering are known to perform poorly for datasets contaminated with even a small number of outliers
This paper presents new deviation inequalities that are valid uniformly in time under adaptive sampling in a multi-armed bandit model. The deviations are measured using the Kullback-Leibler divergence in a given one-dimensional exponential family, an
We consider estimating the parameters of a Gaussian mixture density with a given number of components best representing a given set of weighted samples. We adopt a density interpretation of the samples by viewing them as a discrete Dirac mixture dens
We study the community detection problem on a Gaussian mixture model, in which vertices are divided into $kgeq 2$ distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different e