ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact Recovery of Community Detection in k-Community Gaussian Mixture Model

73   0   0.0 ( 0 )
 نشر من قبل Zhongyang Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Zhongyang Li




اسأل ChatGPT حول البحث

We study the community detection problem on a Gaussian mixture model, in which vertices are divided into $kgeq 2$ distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different entries in the observation matrix, and we do not assume that every community has the same number of vertices. We explicitly find the threshold for the exact recovery of the maximum likelihood estimation. Applications include the community detection on hypergraphs.



قيم البحث

اقرأ أيضاً

102 - Zhongyang Li 2019
We study the vertex classification problem on a graph whose vertices are in $k (kgeq 2)$ different communities, edges are only allowed between distinct communities, and the number of vertices in different communities are not necessarily equal. The ob servation is a weighted adjacency matrix, perturbed by a scalar multiple of the Gaussian Orthogonal Ensemble (GOE), or Gaussian Unitary Ensemble (GUE) matrix. For the exact recovery of the maximum likelihood estimation (MLE) with various weighted adjacency matrices, we prove sharp thresholds of the intensity $sigma$ of the Gaussian perturbation. These weighted adjacency matrices may be considered as natural models for the electric network. Surprisingly, these thresholds of $sigma$ do not depend on whether the sample space for MLE is restricted to such classifications that the number of vertices in each group is equal to the true value. In contrast to the $ZZ_2$-synchronization, a new complex version of the semi-definite programming (SDP) is designed to efficiently implement the community detection problem when the number of communities $k$ is greater than 2, and a common region (independent of $k$) for $sigma$ such that SDP exactly recovers the true classification is obtained.
Community detection is a key task to further understand the function and the structure of complex networks. Therefore, a strategy used to assess this task must be able to avoid biased and incorrect results that might invalidate further analyses or ap plications that rely on such communities. Two widely used strategies to assess this task are generally known as structural and functional. The structural strategy basically consists in detecting and assessing such communities by using multiple methods and structural metrics. On the other hand, the functional strategy might be used when ground truth data are available to assess the detected communities. However, the evaluation of communities based on such strategies is usually done in experimental configurations that are largely susceptible to biases, a situation that is inherent to algorithms, metrics and network data used in this task. Furthermore, such strategies are not systematically combined in a way that allows for the identification and mitigation of bias in the algorithms, metrics or network data to converge into more consistent results. In this context, the main contribution of this article is an approach that supports a robust quality evaluation when detecting communities in real-world networks. In our approach, we measure the quality of a community by applying the structural and functional strategies, and the combination of both, to obtain different pieces of evidence. Then, we consider the divergences and the consensus among the pieces of evidence to identify and overcome possible sources of bias in community detection algorithms, evaluation metrics, and network data. Experiments conducted with several real and synthetic networks provided results that show the effectiveness of our approach to obtain more consistent conclusions about the quality of the detected communities.
In this paper, we study the information theoretic bounds for exact recovery in sub-hypergraph models for community detection. We define a general model called the $m-$uniform sub-hypergraph stochastic block model ($m-$ShSBM). Under the $m-$ShSBM, we use Fanos inequality to identify the region of model parameters where any algorithm fails to exactly recover the planted communities with a large probability. We also identify the region where a Maximum Likelihood Estimation (MLE) algorithm succeeds to exactly recover the communities with high probability. Our bounds are tight and pertain to the community detection problems in various models such as the planted hypergraph stochastic block model, the planted densest sub-hypergraph model, and the planted multipartite hypergraph model.
We develop a Bayesian hierarchical model to identify communities in networks for which we do not observe the edges directly, but instead observe a series of interdependent signals for each of the nodes. Fitting the model provides an end-to-end commun ity detection algorithm that does not extract information as a sequence of point estimates but propagates uncertainties from the raw data to the community labels. Our approach naturally supports multiscale community detection as well as the selection of an optimal scale using model comparison. We study the properties of the algorithm using synthetic data and apply it to daily returns of constituents of the S&P100 index as well as climate data from US cities.
Analyzing the groups in the network based on same attributes, functions or connections between nodes is a way to understand network information. The task of discovering a series of node groups is called community detection. Generally, two types of in formation can be utilized to fulfill this task, i.e., the link structures and the node attributes. The temporal text network is a special kind of network that contains both sources of information. Typical representatives include online blog networks, the World Wide Web (WWW) and academic citation networks. In this paper, we study the problem of overlapping community detection in temporal text network. By examining 32 large temporal text networks, we find a lot of edges connecting two nodes with no common community and discover that nodes in the same community share similar textual contents. This scenario cannot be quantitatively modeled by practically all existing community detection methods. Motivated by these empirical observations, we propose MAGIC (Model Affiliation Graph with Interacting Communities), a generative model which captures community interactions and considers the information from both link structures and node attributes. Our experiments on 3 types of datasets show that MAGIC achieves large improvements over 4 state-of-the-art methods in terms of 4 widely-used metrics.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا