ﻻ يوجد ملخص باللغة العربية
In this paper, we describe Fourier-based Wave Front Sensors (WFS) as linear integral operators, characterized by their Kernel. In a first part, we derive the dependency of this quantity with respect to the WFSs optical parameters: pupil geometry, filtering mask, tip/tilt modulation. In a second part we focus the study on the special case of convolutional Kernels. The assumptions required to be in such a regime are described. We then show that these convolutional kernels allow to drastically simplify the WFSs model by summarizing its behavior in a concise and comprehensive quantity called the WFSs Impulse Response. We explain in particular how it allows to compute the sensors sensitivity with respect to the spatial frequencies. Such an approach therefore provides a fast diagnostic tool to compare and optimize Fourier-based WFSs. In a third part, we develop the impact of the residual phases on the sensors impulse response, and show that the convolutional model remains valid. Finally, a section dedicated to the Pyramid WFS concludes this work, and illustrates how the slopes maps are easily handled by the convolutional model.
We introduce in this article a general formalism for Fourier based wave front sensing. To do so, we consider the filtering mask as a free parameter. Such an approach allows to unify sensors like the Pyramid Wave Front Sensor (PWFS) and the Zernike Wa
In this article, we compare a set of Wave Front Sensors (WFS) based on Fourier filtering technique. In particular, this study explores the class of pyramidal WFS defined as the 4 faces pyramid WFS, all its recent variations (6, 8 faces, the flattened
To reach its optimal performance, Fizeau interferometry requires that we work to resolve instrumental biases through calibration. One common technique used in high contrast imaging is angular differential imaging, which calibrates the point spread fu
A major factor in the success of deep neural networks is the use of sophisticated architectures rather than the classical multilayer perceptron (MLP). Residual networks (ResNets) stand out among these powerful modern architectures. Previous works foc
It is an important question whether the final/initial state gluonic interactions which lead to naive-time-reversal-odd single-spin asymmetries and diffraction at leading twist can be associated in a definite way with the light-front wave function had