ترغب بنشر مسار تعليمي؟ اضغط هنا

Phases of Augmented Hadronic Light-Front Wave Functions

181   0   0.0 ( 0 )
 نشر من قبل Feng Yuan
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is an important question whether the final/initial state gluonic interactions which lead to naive-time-reversal-odd single-spin asymmetries and diffraction at leading twist can be associated in a definite way with the light-front wave function hadronic eigensolutions of QCD. We use light-front time-ordered perturbation theory to obtain augmented light-front wave functions which contain an imaginary phase which depends on the choice of advanced or retarded boundary condition for the gauge potential in light-cone gauge. We apply this formalism to the wave functions of the valence Fock states of nucleons and pions, and show how this illuminates the factorization properties of naive-time-reversal-odd transverse momentum dependent observables which arise from rescattering. In particular, one calculates the identical leading-twist Sivers function from the overlap of augmented light-front wavefunctions that one obtains from explicit calculations of the single-spin asymmetry in semi-inclusive deep inelastic lepton-polarized nucleon scattering where the required phases come from the final-state rescattering of the struck quark with the nucleon spectators.


قيم البحث

اقرأ أيضاً

206 - Xiangdong Ji , Yizhuang Liu 2021
Light-front wave functions play a fundamental role in the light-front quantization approach to QCD and hadron structure. However, a naive implementation of the light-front quantization suffers from various subtleties including the well-known zero-mod e problem, the associated rapidity divergences which mixes ultra-violet divergences with infrared physics, as well as breaking of spatial rotational symmetry. We advocate that the light-front quantization should be viewed as an effective theory in which small $k^+$ modes have been effectively ``integrated out, with an infinite number of renormalization constants. Instead of solving light-front quantized field theories directly, we make the large momentum expansion of the equal-time Euclidean correlation functions in instant quantization as an effective way to systematically calculate light-front correlations, including the light-front wave function amplitudes. This large-momentum effective theory accomplishes an effective light-front quantization through lattice QCD calculations. We demonstrate our approach using an example of a pseudo-scalar meson wave function.
The light-front wave functions of hadrons allow us to calculate a wide range of physical observables; however, the wave functions themselves cannot be measured. We discuss recent results for quarkonia obtained in basis light-front quantization using an effective Hamiltonian with a confining model in both the transverse and longitudinal directions and with explicit one-gluon exchange. In particular, we focus on the numerical convergence of the basis expansion, as well as the asymptotic behavior of the light-front wave functions. We also illustrate that, for mesons with unequal quark masses, the maxima of the light-front wave functions depend in a non-trivial way on the valence quark-mass difference.
63 - Edward Shuryak 2019
We calculate light-front wave functions of mesons, baryons and pentaquarks in a model including constituent mass (representing chiral symmetry breaking), harmonic confining potential, and 4-quark local interaction of t Hooft type. The model is a simp lified version of that used by Jia and Vary. The method used is numerical diagonalization of the Hamiltonian matrix, with certain functional basis. We found that the nucleon wave function displays strong diquar correlations, unlike that for Delta (decuplet) baryon. We also calculate 3-quark-5-quark admixture to baryons, and the resulting antiquark sea PDF.
The structure of the pion wave function in the relativistic constituent quark model is investigated in the explicitly covariant formulation of light-front dynamics. We calculate the two relativistic components of the pion wave function in a simple on e-gluon exchange model and investigate various physical observables: decay constant, charge radius, electromagnetic and transition form factors. We discuss the influence of the full relativistic structure of the pion wave function for an overall good description of all these observables, including both low and high momentum scales.
We investigate the parton distribution functions (PDFs) of the pion and kaon from the eigenstates of a light-front effective Hamiltonian in the constituent quark-antiquark representation suitable for low-momentum scale applications. By taking these s cales as the only free parameters, the valence quark distribution functions of the pion, after QCD evolving, are consistent with the E615 experiment at Fermilab. In addition, the ratio of the up quark distribution in the kaon to that in the pion also agrees with the NA3 experimental result at CERN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا