ﻻ يوجد ملخص باللغة العربية
We introduce in this article a general formalism for Fourier based wave front sensing. To do so, we consider the filtering mask as a free parameter. Such an approach allows to unify sensors like the Pyramid Wave Front Sensor (PWFS) and the Zernike Wave Front Sensor (ZWFS). In particular, we take the opportunity to generalize this two sensors in terms of sensors class where optical quantities as, for instance, the apex angle for the PWFS or the depth of the Zernike mask for the ZWFS become free parameters. In order to compare all the generated sensors of this two classes thanks to common performance criteria, we firstly define a general phase-linear quantity that we call meta-intensity. Analytical developments allow then to split the perfectly phase-linear behavior of a WFS from the non-linear contributions making robust and analytic definitions of the sensitivity and the linearity range possible. Moreover, we define a new quantity called the SD factor which characterizes the trade-off between these two antagonist quantities. These developments are generalized for modulation device and polychromatic light. A non-exhaustive study is finally led on the two classes allowing to retrieve the usual results and also make explicit the influence of the optical parameters introduced above.
In this article, we compare a set of Wave Front Sensors (WFS) based on Fourier filtering technique. In particular, this study explores the class of pyramidal WFS defined as the 4 faces pyramid WFS, all its recent variations (6, 8 faces, the flattened
In this paper, we describe Fourier-based Wave Front Sensors (WFS) as linear integral operators, characterized by their Kernel. In a first part, we derive the dependency of this quantity with respect to the WFSs optical parameters: pupil geometry, fil
Context. The next generation of space-borne instruments dedicated to the direct detection of exoplanets requires unprecedented levels of wavefront control precision. Coronagraphic wavefront sensing techniques for these instruments must measure both t
In tomographic adaptive-optics (AO) systems, errors due to tomographic wave-front reconstruction limit the performance and angular size of the scientific field of view (FoV), where AO correction is effective. We propose a multi time-step tomographic
The Quantum Fourier Transformation ($QFT$) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize $QFT$ to enhance the perf