ترغب بنشر مسار تعليمي؟ اضغط هنا

Arboreal singularities and loose Legendrians I

54   0   0.0 ( 0 )
 نشر من قبل Emmy Murphy
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Emmy Murphy




اسأل ChatGPT حول البحث

Arboreal singularities are an important class of Lagrangian singularities. They are conical, meaning that they can be understood by studying their links, which are singular Legendrian spaces in $S^{2n-1}_{text{std}}$. Loose Legendrians are a class of Legendrian spaces which satisfy an $h$--principle, meaning that their geometric classification is in bijective correspondence with their topological types. For the particular case of the linear arboreal singularities, we show that constructable sheaves suffice to detect whether any closed set of an arboreal link is loose.



قيم البحث

اقرأ أيضاً

We study homotopically non-trivial spheres of Legendrians in the standard contact R3 and S3. We prove that there is a homotopy injection of the contactomorphism group of S3 into some connected components of the space of Legendrians induced by the nat ural action. We also provide examples of loops of Legendrians that are non-trivial in the space of formal Legendrians, and thus non-trivial as loops of Legendrians, but which are trivial as loops of smooth embeddings for all the smooth knot types.
The Chekanov-Eliashberg dg-algebra is a holomorphic curve invariant associated to Legendrian submanifolds of a contact manifold. We extend the definition to Legendrian embeddings of skeleta of Weinstein manifolds. Via Legendrian surgery, the new defi nition gives direct proofs of wrapped Floer cohomology push-out diagrams. It also leads to a proof of a conjectured isomorphism between partially wrapped Floer cohomology and Chekanov-Eliashberg dg-algebras with coefficients in chains on the based loop space.
This article introduces the notion of a loose family of Engel structures and shows that two such families are Engel homotopic if and only if they are formally homotopic. This implies a complete h-principle when some auxiliary data is fixed. As a coro llary, we show that Lorentz and orientable Cartan prolongations are classified up to homotopy by their formal data.
We construct the geometric quantization of a compact surface using a singular real polarization coming from an integrable system. Such a polarization always has singularities, which we assume to be of nondegenerate type. In particular, we compute the effect of hyperbolic singularities, which make an infinite-dimensional contribution to the quantization, thus showing that this quantization depends strongly on polarization.
About 6 years ago, semitoric systems were classified by Pelayo & Vu Ngoc by means of five invariants. Standard examples are the coupled spin oscillator on $mathbb{S}^2 times mathbb{R}^2$ and coupled angular momenta on $mathbb{S}^2 times mathbb{S}^2$, both having exactly one focus-focus singularity. But so far there were no explicit examples of systems with more than one focus-focus singularity which are semitoric in the sense of that classification. This paper introduces a 6-parameter family of integrable systems on $mathbb{S}^2 times mathbb{S}^2$ and proves that, for certain ranges of the parameters, it is a compact semitoric system with precisely two focus-focus singularities. Since the twisting index (one of the semitoric invariants) is related to the relationship between different focus-focus points, this paper provides systems for the future study of the twisting index.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا