ﻻ يوجد ملخص باللغة العربية
This article introduces the notion of a loose family of Engel structures and shows that two such families are Engel homotopic if and only if they are formally homotopic. This implies a complete h-principle when some auxiliary data is fixed. As a corollary, we show that Lorentz and orientable Cartan prolongations are classified up to homotopy by their formal data.
We relate open book decompositions of a 4-manifold M with its Engel structures. Our main result is, given an open book decomposition of M whose binding is a collection of 2-tori and whose monodromy preserves a framing of a page, the construction of a
We study pairs of Engel structures on four-manifolds whose intersection has constant rank one and which define the same even contact structure, but induce different orientations on it. We establish a correspondence between such pairs of Engel structu
This paper presents two existence h-principles, the first for conformal symplectic structures on closed manifolds, and the second for leafwise conformal symplectic structures on foliated manifolds with non empty boundary. The latter h-principle allow
Let V be a closed 3-manifold. In this paper we prove that the homotopy classes of plane fields on V that contain tight contact structures are in finite number and that, if V is atoroidal, the isotopy classes of tight contact structures are also in finite number.
We survey the interactions between foliations and contact structures in dimension three, with an emphasis on sutured manifolds and invariants of sutured contact manifolds. This paper contains two original results: the fact that a closed orientable ir