ﻻ يوجد ملخص باللغة العربية
The Chekanov-Eliashberg dg-algebra is a holomorphic curve invariant associated to Legendrian submanifolds of a contact manifold. We extend the definition to Legendrian embeddings of skeleta of Weinstein manifolds. Via Legendrian surgery, the new definition gives direct proofs of wrapped Floer cohomology push-out diagrams. It also leads to a proof of a conjectured isomorphism between partially wrapped Floer cohomology and Chekanov-Eliashberg dg-algebras with coefficients in chains on the based loop space.
We apply the barcodes of persistent homology theory to the Chekanov-Eliashberg algebra of a Legendrian submanifold to deduce displacement energy bounds for arbitrary Legendrians. We do not require the full Chekanov-Eliashberg algebra to admit an augm
Arboreal singularities are an important class of Lagrangian singularities. They are conical, meaning that they can be understood by studying their links, which are singular Legendrian spaces in $S^{2n-1}_{text{std}}$. Loose Legendrians are a class of
We study homotopically non-trivial spheres of Legendrians in the standard contact R3 and S3. We prove that there is a homotopy injection of the contactomorphism group of S3 into some connected components of the space of Legendrians induced by the nat
Let TA denote the space underlying the tensor algebra of a vector space A. In this short note, we show that if A is a differential graded algebra, then TA is a differential Batalin-Vilkovisky algebra. Moreover, if A is an A-infinity algebra, then TA is a commutative BV-infinity algebra.
In this paper, we introduce and study differential graded (DG for short) polynomial algebras. In brief, a DG polynomial algebra $mathcal{A}$ is a connected cochain DG algebra such that its underlying graded algebra $mathcal{A}^{#}$ is a polynomial al