ترغب بنشر مسار تعليمي؟ اضغط هنا

Global labor flow network reveals the hierarchical organization and dynamics of geo-industrial clusters in the world economy

91   0   0.0 ( 0 )
 نشر من قبل Jaehyuk Park
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Groups of firms often achieve a competitive advantage through the formation of geo-industrial clusters. Although many exemplary clusters, such as Hollywood or Silicon Valley, have been frequently studied, systematic approaches to identify and analyze the hierarchical structure of the geo-industrial clusters at the global scale are rare. In this work, we use LinkedIns employment histories of more than 500 million users over 25 years to construct a labor flow network of over 4 million firms across the world and apply a recursive network community detection algorithm to reveal the hierarchical structure of geo-industrial clusters. We show that the resulting geo-industrial clusters exhibit a stronger association between the influx of educated-workers and financial performance, compared to existing aggregation units. Furthermore, our additional analysis of the skill sets of educated-workers supplements the relationship between the labor flow of educated-workers and productivity growth. We argue that geo-industrial clusters defined by labor flow provide better insights into the growth and the decline of the economy than other common economic units.



قيم البحث

اقرأ أيضاً

Functional networks provide a topological description of activity patterns in the brain, as they stem from the propagation of neural activity on the underlying anatomical or structural network of synaptic connections. This latter is well known to be organized in hierarchical and modular way. While it is assumed that structural networks shape their functional counterparts, it is also hypothesized that alterations of brain dynamics come with transformations of functional connectivity. In this computational study, we introduce a novel methodology to monitor the persistence and breakdown of hierarchical order in functional networks, generated from computational models of activity spreading on both synthetic and real structural connectomes. We show that hierarchical connectivity appears in functional networks in a persistent way if the dynamics is set to be in the quasi-critical regime associated with optimal processing capabilities and normal brain function, while it breaks down in other (supercritical) dynamical regimes, often associated with pathological conditions. Our results offer important clues for the study of optimal neurocomputing architectures and processes, which are capable of controlling patterns of activity and information flow. We conclude that functional connectivity patterns achieve optimal balance between local specialized processing (i.e. segregation) and global integration by inheriting the hierarchical organization of the underlying structural architecture.
Categorization is an essential component for us to understand the world for ourselves and to communicate it collectively. It is therefore important to recognize that classification system are not necessarily static, especially for economic systems, a nd even more so in urban areas where most innovation takes place and is implemented. Out-of-date classification systems would potentially limit further understanding of the current economy because things constantly change. Here, we develop an occupation-based classification system for the US labor economy, called industrial topics, that satisfy adaptability and representability. By leveraging the distributions of occupations across the US urban areas, we identify industrial topics - clusters of occupations based on their co-existence pattern. Industrial topics indicate the mechanisms under the systematic allocation of different occupations. Considering the densely connected occupations as an industrial topic, our approach characterizes regional economies by their topical composition. Unlike the existing survey-based top-down approach, our method provides timely information about the underlying structure of the regional economy, which is critical for policymakers and business leaders, especially in our fast-changing economy.
Objective: The COVID-19 pandemic has created many challenges that need immediate attention. Various epidemiological and deep learning models have been developed to predict the COVID-19 outbreak, but all have limitations that affect the accuracy and r obustness of the predictions. Our method aims at addressing these limitations and making earlier and more accurate pandemic outbreak predictions by (1) using patients EHR data from different counties and states that encode local disease status and medical resource utilization condition; (2) considering demographic similarity and geographical proximity between locations; and (3) integrating pandemic transmission dynamics into deep learning models. Materials and Methods: We proposed a spatio-temporal attention network (STAN) for pandemic prediction. It uses an attention-based graph convolutional network to capture geographical and temporal trends and predict the number of cases for a fixed number of days into the future. We also designed a physical law-based loss term for enhancing long-term prediction. STAN was tested using both massive real-world patient data and open source COVID-19 statistics provided by Johns Hopkins university across all U.S. counties. Results: STAN outperforms epidemiological modeling methods such as SIR and SEIR and deep learning models on both long-term and short-term predictions, achieving up to 87% lower mean squared error compared to the best baseline prediction model. Conclusions: By using information from real-world patient data and geographical data, STAN can better capture the disease status and medical resource utilization information and thus provides more accurate pandemic modeling. With pandemic transmission law based regularization, STAN also achieves good long-term prediction performance.
In online social media systems users are not only posting, consuming, and resharing content, but also creating new and destroying existing connections in the underlying social network. While each of these two types of dynamics has individually been s tudied in the past, much less is known about the connection between the two. How does user information posting and seeking behavior interact with the evolution of the underlying social network structure? Here, we study ways in which network structure reacts to users posting and sharing content. We examine the complete dynamics of the Twitter information network, where users post and reshare information while they also create and destroy connections. We find that the dynamics of network structure can be characterized by steady rates of change, interrupted by sudden bursts. Information diffusion in the form of cascades of post re-sharing often creates such sudden bursts of new connections, which significantly change users local network structure. These bursts transform users networks of followers to become structurally more cohesive as well as more homogenous in terms of follower interests. We also explore the effect of the information content on the dynamics of the network and find evidence that the appearance of new topics and real-world events can lead to significant changes in edge creations and deletions. Lastly, we develop a model that quantifies the dynamics of the network and the occurrence of these bursts as a function of the information spreading through the network. The model can successfully predict which information diffusion events will lead to bursts in network dynamics.
Governments have long standing interests in preventing market failures and enhancing innovation in strategic industries. Public policy regarding domestic technology is critical to both national security and economic prosperity. Governments often seek to enhance their global competitiveness by promoting private sector cooperative activity at the inter-organizational level. Research on network governance has illuminated the structure of boundary-spanning collaboration mainly for programs with immediate public or non-profit objectives. Far less research has examined how governments might accelerate private sector cooperation to prevent market failures or to enhance innovation. The theoretical contribution of this research is to suggest that government programs might catalyze cooperative activity by accelerating the preferential attachment mechanism inherent in social networks. We analyze the long-term effects of a government program on the strategic alliance network of 451 organizations in the high-tech semiconductor industry between 1987 and 1999, using stochastic network analysis methods for longitudinal social networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا