ﻻ يوجد ملخص باللغة العربية
Functional networks provide a topological description of activity patterns in the brain, as they stem from the propagation of neural activity on the underlying anatomical or structural network of synaptic connections. This latter is well known to be organized in hierarchical and modular way. While it is assumed that structural networks shape their functional counterparts, it is also hypothesized that alterations of brain dynamics come with transformations of functional connectivity. In this computational study, we introduce a novel methodology to monitor the persistence and breakdown of hierarchical order in functional networks, generated from computational models of activity spreading on both synthetic and real structural connectomes. We show that hierarchical connectivity appears in functional networks in a persistent way if the dynamics is set to be in the quasi-critical regime associated with optimal processing capabilities and normal brain function, while it breaks down in other (supercritical) dynamical regimes, often associated with pathological conditions. Our results offer important clues for the study of optimal neurocomputing architectures and processes, which are capable of controlling patterns of activity and information flow. We conclude that functional connectivity patterns achieve optimal balance between local specialized processing (i.e. segregation) and global integration by inheriting the hierarchical organization of the underlying structural architecture.
Although most networks in nature exhibit complex topology the origins of such complexity remains unclear. We introduce a model of a growing network of interacting agents in which each new agents membership to the network is determined by the agents e
We investigate site percolation in a hierarchical scale-free network known as the Dorogovtsev- Goltsev-Mendes network. We use the generating function method to show that the percolation threshold is 1, i.e., the system is not in the percolating phase
Groups of firms often achieve a competitive advantage through the formation of geo-industrial clusters. Although many exemplary clusters, such as Hollywood or Silicon Valley, have been frequently studied, systematic approaches to identify and analyze
A brief review is given on the study of the thermodynamic properties of spin models defined on different topologies like small-world, scale-free networks, random graphs and regular and random lattices. Ising, Potts and Blume-Capel models are consider
Generalized linear models are one of the most efficient paradigms for predicting the correlated stochastic activity of neuronal networks in response to external stimuli, with applications in many brain areas. However, when dealing with complex stimul